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INTEGRATED THEATER CONSTRUCTION MANAGEMENT
INFORMATIONAL AND FUNCTIONAL REQUIREMENTS

1  INTRODUCTION

Background

Current U.S. warfighting scenarios focus on the strategy of projecting decisive combat power from
the continental U.S. to remote regions of the world within a short time frame. Land combat forces
deployed in such a rapidly unfolding situation will require a well-developed infrastructure—roads and
bridges capable of supporting heavy equipment traffic, airports and seaports capable of handling large
throughputs of men and materiel, secure facilities in which to work and live, storage facilities for fuel and
ammunition, and more. This type of infrastructure presently does not exist in many regions of potential
conflict. Combat engineers, under their sustainment engineering mission, are responsible for the design
and construction of the facilities that make up the infrastructure required to support military operations.
Under the evolving AirLand Battle doctrine and force structure, the successful accomplishment of
sustainment engineering mission requirements will be critical to the ultimate success of a campaign but
will be difficult to achieve.

Sustainment engineering activities span the entire operational spectrum, from the earliest planning
stages to the final restoration efforts. Before the first troops are on the ground, the formulation of an
initial strategy will depend on a rapid engineer estimate of the adequacy of a region’s infrastructure and
of the time and resources required to upgrade it. When forces are actually deployed, airlift and sealift
capacities for transporting engineer equipment and supplies will be severely limited, particularly during
the initial build-up period when they are most needed. More than ever before, engineer forces will rely
heavily on civilian and host nation support. The timing, coordination, and control of all types of
construction in a theater will be crucial, requiring excellent communications and constant adaptations to
changing priorities and conditions.

Sustainment engineering is also a military mission with a large role in operations other than war.
Recent experiences with the refugee problem in Iraq after Desert Storm and with relief work in
Somalia—critical humanitarian efforts in hostile environments—highlight the importance of having a
trained and ready construction engineering capability. Nation assistance and disaster relief efforts require
quick, effective planning and efficient execution of facility construction and repair, often with the same
types of time and cost constraints and shifting priorities encountered during combat. These types of
activities are increasing in number and scope at the same time that force capabilities are being reduced.

In their future operations, the Army’s sustainment engineering forces will be required to do more
in less time with fewer resources and more coordination than ever before. Computer technology can help
the engineer community meet this challenge by filling the gap created by limited time, resources, and
expertise and linking engineer forces with the digital network that will be the future foundation of
command and control. Computer systems already offer indispensable tools for managing data, multimedia
information, projects, resources, communications, etc. As software development technologies improve and
the use of networked desktop computers becomes commonplace, Army engineers will find that successful
misgion accomplishment is tied more and more to their ability to access and use sophisticated, well-
integrated computer systems designed to meet their specific needs.




Integrated Theater Construction Management (ITCM) research focuses on identifying the automated
support requirements of the sustainment engineering mission in the next century and on developing
software techniques for integrating the complex management processes associated with building the
infrastructure required for military operations. The goal of ITCM is to bring together in one tightly

integrated family of programs a state-of-the-art computer support system to aid in forecasting, planning,
designing, and managing sustainment engineering operations both in peacetime and in war.

Objective

The objective of the ITCM work units is to design and develop integrated planning and project
management software tools to assist military engineers in executing sustainment engineering, disaster
relief, and nation assistance missions. These tools will provide the capability to generate and track facility
and resource requirements, to manage resources and projects in a dynamic environment, to do what-if
analyses, to assist in determining priorities, and to provide consistent command and control interfaces
between engineer units at different echelons.

This technical report summarizes the informational and functional requirements for planning and
managing sustainment engineering operations, outlines the current state of automated engineer systems and
evolving software technologies, and identifies the research areas requiring the most intensive efforts to
permit the development of the ultimate integrated system.

Approach

ITCM research builds on the experiences of an earlier U.S. Amny Construction Engineering Research
Laboratories (USACERL) effort that produced the Theater Construction Management System (TCMS),
Version 1.0. This software system linked commercial software packages (AutoCAD, Drawing Librarian,
Project Scheduler 5, and PFS:First Choice) with the dBase-format database files of the Amny Facilities
Component System (AFCS) to produce a menu-driven operational planning and management tool for the
engineering staffs at brigade, group, and engineer command (ENCOM) levels.

To identify the informational and functional capabilities required for ITCM, the researchers studied
many written and oral reports from engineers deployed to the Persian Gulf and Somalia, to nation
assistance activities around the world, and to disaster relief efforts in the United States. The relevant
observations from these experiences are documented in Chapter 2 of this report and serve as the basis for
establishing the vision for ITCM capabilities. Additionally, the researchers gathered valuable information
from user feedback during the testing of TCMS at engineer exercises and from engineer unit experiences
with an early prototype of TCMS during Desert Shield/Storm. Chapter 3 presents descriptions of AFCS
and TCMS and summarizes the relevant limitations of the current system.

The areas to be explored in achieving the vision of what ITCM should be as an automated support
tool lie in multiple disciplines: operations research, software development technologies, computer
modeling, artificial intelligence, and information management. During the early 1990s, tremendous strides
in computer hardware and software capabilities opened a number of avenues for expanding the basic
functions of TCMS. Object-oriented design/programming offers a new approach to managing the
complexity of large systems such as one that would be needed for sustainment engineering processes.
New techniques for the design of graphical user interfaces will help reduce complexity for the end user.
New database management and multimedia tools offer powerful mechanisms for placing information at
the user’s fingertips. Simulation and knowledge-based reasoning embedded in new software systems have
the potential of providing powerful analytic capabilities. The major portion of the ITCM research is




devoted to leveraging these new technologies to produce a comprehensive sustainment engineering
software system capable of supporting operations across staff positions and unit levels. Chapter 4 of this
report provides a summary of the hierarchical nature of the problem area and of the evolving technologies

and how they can be applied to achieve the vision of ITCM.

Several of the new technologies to be applied to ITCM are in their infancy and require further
development. In addition, the sustainment engineering processes themselves must be analyzed from a
software application perspective. These areas are the focus of future work units and are outlined in
Chapter § of this report under conclusions and recommendations.

Mode of Technology Transfer

This technical report is the mode of technology transfer for the portion of ITCM completed in FY93.
Given future funding, the researchers will be able to produce a pilot software system of integrated
planning and management functions to demonstrate the design characteristics needed for the development
of a fieldable system.




2  THE SUSTAINMENT ENGINEERING MISSION

Introduction

Integrated Theater Construction Management (ITCM) research will provide new capabilities for
developing automated support for the planning and management of sustainment engineering operations
in the next century. Those operations will be greatly affected by recent changes in the world order, in our
armed forces, and in our technologies. The disintegration of the Soviet Union and the subsequent shifting
of our national focus from global war to regional contingency have changed the shape of future military
operations dramatically. The rush to capture the “peace dividend” has brought drastic reductions in the
size of our armed services and left in its wake many questions about how best to structure and train the
remaining force to meet a variety of possible contingencies. And our growing awareness of the fragile
nature of our planet and our dependence on the political, economic, and social climates of other nations
has forced us to consider more carefully what types of actions we are willing to take to defend our
national interests. In this very dynamic and complex environment, combat engineers responsible for
providing the infrastructure to support military operations must be prepared to respond to a greater variety
of contingencies with fewer resources and more restrictions than ever before.

This chapter summarizes the sustainment engineering mission as it is specified in doctrine and as
it is carried out in actual practice. What is outlined here for sustainment engineering in terms of mission,
organizational structures, functional requirements, and recent experiences will be the basis for the content
and structure of the ITCM system methodology.

The first two sections of this chapter describe sustainment engineering mission responsibilities and
the organizational structures that are directly linked with mission performance. The third section discusses
the operational continuum of the planning and management process and identifies the functional
capabilities required in a theater of operations. The fourth section summarizes recent experiences of
engineer units during the Gulf War and during several nation assistance and disaster relief efforts. These
firsthand accounts of real-world mission requirements and the environments in which they were
accomplished highlight specific problem areas that bear further examination. The concluding section
identifies 12 key elements common to- all the case studies and essential for defining a context for the
capabilities to be developed under ITCM.

Sustainment Engineering Mission Requirements

According to U.S. Army engineer doctrine, the primary mission of sustainment engineering units
and equipment is to assist combat units in performing their mission. They do this in a variety of ways,
though the bulk of their activities consists of constructing, maintaining, repairing, and upgrading the roads,
bridges, ports, airfields, storage facilities, camps, and bases required to support combat operations.
Appendix A contains a complete mission essential task list (METL) for sustainment engineering. The list
of mission responsibilities is divided into four categories:

1) lines of communication (upgrade, maintain, and construct lines of communication supporting
movement of personnel, equipment, and material over land, air, and sea, including roads, railroads,
ports, airfields, pipelines, and waterways);

2) facilities (upgrade, maintain, and construct facilities supporting personnel and equipment,
including command and control (C°) and air defense artillery (ADA) facilities, supply depots,
hosgpitals, billeting, and maintenance facilities);




3) area damage control (control and relieve both direct and indirect effects from natural and man-
made disasters, including rapid runway repair, firefighting, decontamination, flood control, route
clearance, and structure reinforcement);

4) production of construction materials (produce required materials and deliver to the construction
site, including crushed rock, concrete, asphalt, and lumber).

Every division has some limited capability to perform sustainment engineering operations to increase
their survivability and maintain their resupply routes to the brigade rear area. In the current Amny force
structure, some divisions have a considerable quantity of sustainment engineering capability for hasty
construction of airfields, heliports, etc. The equipment used for sustainment engineering is not armored
and consists primarily of camouflaged commercial construction equipment.

In the Corps rear area and communications zone, sustainment engineering operations may be planned
and/or performed by Army troop unit<, by troop units of other services or nations, by Army Corps of
Engineers civilians, by contractors, .. by host nation engincers. The assumption is that sustainment
engineering operations behind the division rear boundary do not normally come under enemy fire unless
they involve construction or repair of high priority targets (airfields, ports, bridges, etc.). Though much
of the work is performed by civilia. contractors, U.S. Army sustainmc engineering units provide a rapid
response construction capability and must be prepared to perform all high priority missions if other means
are unavailable because of dangerous conditions, security requirements, or timing and synchronization.

The Ammy currently maintains a large inventory of construction equipment, but the fleet is aging
and not likely to be replaced. Recent budget constraints, the ready availability of commercial equipment,
and the increased reliance on contracted construction have forced acquisition of new sustainment
engineering systems to a low position on the Army’s priority list. Because of the age and repair problems
of the current fleet of equipment and the burden it places on airlift/sealift capacities, military construction
units will generally deploy initially with minimum equipment and will rely heavily on the use of leased
equipment during future contingency operations.

In a full deployment for a major contingency, the theater army is the central organizational
framework for sustainment operations, and the ENCOM commands and controls the theater army engineer
force. The number and type of echelon-above-corps (EAC) units in the engineer force structure is tailored
to fit the theater requirements, and a variety of command and support relationships may be established.
Federal Manual (FM) 5-116, Engineer Operations: Echelons Above Corps provides descriptions of the
various organizational structures that might be used, and the reader is referred to that document for more
details. Related to the design of ITCM, it is important to note from this FM that all EAC engineer units
at the brigade level and above have missions which require them to plan, design, and manage the
construction of facilities and lines of communication, to manage host nation and contract engineering, and
to manage critical theater Class IV construction materials.

Army sustainment engineers have one of the few military missions that includes a large role in
operations other than war, including operations conducted during peacetime. These operations include
nation assistance to provide engineer advice and perform actual construction projects, and disaster relief
to assist emergency management agencies and local authorities in the wake of large-scale disasters.

Under nation assistance, Army engineers provide general engineering advice and support to allied
and friendly countries and to other U.S. agencies who are assisting those countries. The goals of nation
assistance activities are to promote stability and enhance the growth of the host nation, to protect the host
nation environment and public health during economic development, and to reduce poverty and hunger
to promote self-sufficiency. The assistance may include training host nation personnel, supporting work




by U.S. Army Corps of Engineers (USACE), and performing actual construction and repair work. Army
engineer troop units participate in construction, maintenance and repair efforts to improve host nation
infrastructure (airfields, roads, bridges, canals, dams, etc.), civil facilities (schools, medical clinics, and
governmental buildings), and utility services (power, water, and sewage treatment). Sustainment engineer
units frequently operate alone in isolated regions, and their activities may be viewed as a threat by
insurgent forces attempting to destabilize the govemment of the host nation. Engineer troops must be
prepared to react if the situation should change from normal peacetime to conflict. These engineer, units
may be the only available units that are trained and equipped to fight as infantry.

Under disaster relief, Amy engineers provide emergency assistance both in the United States and
elsewhere in the wake of natural and manmade disasters: earthquakes, hurricanes, floods, fires, and
contamination from chemical, biological, or nuclear releases. The typical response is to provide immediate
assistance in restoring order and basic services. Army disaster relief efforts must be coordinated with a
number of local and national agencies that have either direct or emergency management responsibilities
in the affected area.

Organizational Structures

Army engineers have the bulk of the responsibility for planning sustainment engineering missions
during a land-based contingency. At the theater level, the Army component sustainment engineering
functions are managed by an ENCOM. The Army currently has two ENCOMSs, the 412th ENCOM
headquartered in Vicksburg, MS, and the 416th ENCOM in Chicago, IL. Figure 1, taken from FM 5-116,
shows the organizational structure of a fully deployed ENCOM.

As an automated planning and management tool, the ITCM system will focus on the activities of
the headquarters and headquarters company (HHC) at the ENCOM, Brigade/ Group, and Battalion levels.

Figure 1. Typical Mature Theater ENCOM.
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Each of these echelons looks at sustainment engineering missions and resources at different levels of detail
over different time spans and for different purposes. The hierarchical breakdown in unit structure from
the ENCOM to the Battalion follows the typical three-level view of projects and resources (Table 1). The
ENCOM takes the long-range approach and concentrates on acquiring, positioning, and coordinating the
correct number and type of resources to meet anticipated project requirements. The midlevel view of the
Brigade and Group focuses on matching available resources with prioritized projects to achieve the most
efficient and effective completion of known missions. The Battalion takes the most operational, short-term
view of the three, concentrating on scheduling of resources to accomplish the specific tasks associated with
assigned missions. One of the most difficult aspects of ITCM will be to design a system that can move
consistently from level to level, providing the appropriate capabilities in an integrated fashion.

Within the Army, ENCOMSs have the construction management lead, but the current emphasis on
Joint operations requires ITCM to consider the engineering organizational structures above the ENCOM
level. A variety of structures are possible, each shaped to fit a given contingency’s requirements. The
engineering staffs at the joint and unified levels of a command focus on strategic planning; establishing
priorities and monitoring operational costs at the macro level. These engineers are drawn from civil
engineering resources of the Amy, Navy, and Air Force, and in the Army’s case would most naturally
come from one of the ENCOMs. While ITCM focuses on construction management at the ENCOM level
and below, it is important to note that ENCOM personnel are actively involved in macro-level construction
planning activitics. These activities have perhaps the most pressing need for automated support because
of the complexity of the tasks and the time-sensitive nature of the work. Indeed, the current reliance on
civilian contractor and host nation support for the actual construction of the facilities and lines of
communication in a theater of operations indicates that, in the future, Army EAC engineers will probably
require as much automated support for strategic planning and contract and funds management as for the
planning and management of actual troop construction.

Table 1. Hierarchical Breakdown of Sustainment Engineering Missions.

ENCOM HHC Perform operational planning and supervision

Coordinate activities of assigned or attached engineer brigades,
groups, and other units engaged in construction

Plan and coordinate operations of engineer units engaged in
construction, maintenance, and rehabilitation of facilities and lines
of communication (LOCs)

Perform construction, maintenance, and rehabilitation of facilities
and LOGCs
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Functional Capabilities Requirements

The functional capabilities needed to support planning and managing the performance of sustainment
engineering tasks must address the activities outlined in the following logical sequence of steps:

1. Provide engineer estimate

a
b.
¢
d

Analyze commander’s intent

Forecast engineer mission requirements
Assess engineer capabilities

Report engineer estimate

2. Detemnine actual mission requirements

a

Determine facility/LOC requirements
(1) Identify facility/LOC specification parameters
(2) Establish size and operational capabilities
(3) Define life cycle expectations (build, maintain, destroy)
(4) Determine security/safety requirements
Identify operational constraints
(1) Set project milestones
(2) Determine spending limitations
(3) Identify geographical, climatological, political limitations
Establish priorities for meeting requirements
(1) Consider risks to mission success
(2) Determine impact of deployment schedule on resource availability
(3) Assess long-term effects on capability
Select methods for meeting requirements
(1) Locate existing facility/LOC
(a) Determine pertinent attributes of locally available facilities/LOCs
(b) Match facility/LOC requirements with available facilities/LOCs
or :
(1) Plan construction of new facility/LOC
(a) Select and survey site
(b) Design facility/LOC

3. Accomplish mission

a
b.

or

Procure site
Establish rights to use existing facility/LOC

b’. Construct new facility/LOC

c.
d

(1) Contract with civilian/host nation
(2) Manage quality assurance for contract work
or
(1’) Issue construction directive to subordinate unit
(2’). Manage troop construction project
(a) Allocate resources
(b) Procure supplies
(c) Schedule work
(d) Monitor progress
Report progress
Adjust for contingencies

12




4. Maintain ongoing capabilities
Monitor unit status

Maintain equipment

Update inventories

Gather operational statistics

(1) Perform cost accounting

(2) Study unit productivity/efficiency
(3) Analyze after-action reports

an o

Automated support for each of these activities is possible. Indeed, computer tools are already in use for
many of them. The ITCM effort will concentrate on structuring the system in a way that provides
consistency of information and integration of functions horizontally across staff positions and vertically
between multiple echelons of command.

Recent Experiences

This section summarizes recent experiences of engineer units during the Gulf War and during several
nation assistance and disaster relief efforts. These firsthand accounts of real-world mission requirements
and the environments in which they were accomplished highlight specific problem areas and functional
capabilities that bear further examination. What is reported here in anecdotal form and at the end of the
chapter as “common threads™ are the common elements that define the types and quantities of work
involved in the sustainment engineering mission and the difficulties most often encountered in completing
that work.

Desert Shield/Desert Storm (DSIDS)

20th Engineer Brigade (Airborne). The 20th Engincer Brigade (Airbomne) deployed for Desert
Shield on 21 August 1990 and was one of the first engineer units on the ground. Though their initial
responsibilities included all engineer mission areas (mobility, countermobility, survivability, sustainment
engineering, and topographic engineering), the unit’s early efforts concentrated on sustainment. .

The 20th’s first lesson was one leamed by Field Marshal Rommel during World War II: “Before
you can defeat the enemy, you must defeat the desert.” The unit expended a considerable amount of time
and effort coping with climate and terrain. Problems with sand and dust during DS/DS are well
documented. The area of operations covered more than 90,000 square miles of largely open and barren
terrain. Competing priorities for cargo shipments caused significant delays in receiving Class IV material.

The 20th’s efforts concentrated on assisting logistical resupply and protecting troops from the harsh
environment. Among their accomplishments, the 20th listed construction of more than 1000 helicopter
pads and approximately 1000 miles of newly cleared desert roads; preparation of ammunition supply
points, petroleum terminals, and protective berms; and construction of six 2500-man base camps.

The unit used host nation contract construction equipment to ease the shortage of compactors, water
distributors, and dump trucks. They also worked with host nation support engineers to leam local
construction practices.

416th Engineer Command (ENCOM). MG Termrence D. Mulcahey documented the DS/DS
experience of the 416th ENCOM in a 1992 article in Military Review (“Engineer Support in the
COMMZ,” March 1992). The 416th was activated in total and became operational in Saudi Arabia by
12 December 1990.
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The primary mission of the 416th was command and control (C?) of EAC engineer units. Their C
responsibilities extended to an engineer brigade, three engineer groups, three combat heavy engineer
battalions, a topographic battalion, nine engineer companies, and 10 specialized engineer detachments.
MG Mulcahey states that the rule of thumb for planning task organization is one engineer brigade and one
topographical battalion for each forward-deployed mancuver corps plus specialty engineer units as required
(for example: port construction companies, dump truck companies, construction support companies,
pipeline companies, and detachments to provide well drilling, prime power, and real estate expertise).

Before deploying, the 416th used the Civil Engineering Support Plan (CESP) at Central Command
(CENTCOM) Headquarters in Florida to develop initial planning factors to project engineering
requirements for the theater and to estimate the costs of supporting those requirements. In Saudi Arabia,
the unit controlled the following major projects: the construction, repair, and maintenance of 2200
kilometers of roads; construction of 408 kilometers of fuel pipelines; construction of two 48,000-person
prisoner-of-war camps; construction of helipads and aircraft beddown sites; management of theater Class
IV materials, including procurement of more than $64 million in Class IV supplies (500,000 cubic meters
of gravel, 170,000 metric tons of asphalt, 93,000 cubic meters of ready-mix concrete, 68,000 metric tons
of construction steel, and electrical and plumbing materials); building of defensive positions for rear area
troop compounds; construction of temporary storage buildings; drilling and rehabilitation of wells; real
property maintenance; real estate acquisition; and environmental engineering support. The ENCOM was
responsible for keeping track of existing projects, anticipating new projects as the war progressed, and
planning tasks for incoming engineer units. The ENCOM even prepared a hazardous waste policy for
CENTCOM and developed a theater plan for environmental cleanup.

The 416th served as the Army theater engineer, interfacing with the host nation, the other U.S.
services, Middle East/Africa Projects Office (MEAPO), and the engineer brigades of the two Corps. The
unit also contracted for engineer troops to operate civilian quarry sites and asphalt plants when business
owners could not find civilian workers to continue work after fighting began and procured 154 major
items of engineering equipment within Saudi Arabia. Finally, the ENCOM served as consultant to
determine the engineer effort required to provide a minimum life support structure for Kuwait and to
provide engineer support for the relocation of refugees, including planning to support redeployment of
U.S. troops.

In another DS/DS article, Chief of Engineers LTG Henry J. Hatch reported on the role of USACE
and, indirectly, about the role of engineer units (“Corps of Engineers: Laying the Groundwork for Theater
Operations,” Military Review, March 1992):

There were few engineers in theater when the first corps representatives arrived, in part because
CENTCOM had reduced the number of engineer units in the initial deployment to allow for the
transport of maneuver units. No engineer command had yet arrived to manage construction
requirements. Yet, the requirements for contract comstruction and real estate support were, as
CENTCOM engineer Colonel Jay W. Braden described, “"immediate and massive.” The first elements
of the 82nd Airborne Division were arriving in Dhahran with no logistic structure to support them, no
shelter in 120 degree heat and no sanitation facilities,

On 12 September 1990, the SUPCOM reported that real estate leasing was the predominant engineer
activity. Officials were finalizing an average of four leases a week with private landowners and
businesses, and the average lease provided housing for 500 people. ...By early November, there were
97 leases totaling about $94 million,

We were trying to get our troops out of the sun, out of the sand, and into some air conditioning...

(Units identified requirements and sent them through channels to the SUPCOM, which established
priorities.) SUPCOM priorities changed daily, sometimes hourly.
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Efforts to meet the construction and real estate requirements of U.S. forces, however, would not have
been as successful if the troops had not deployed 10 a part of the world that had an existing supply of
contractors, materials and facilities. Without that supply of fuel, equipment and contractors, the
engineers’ ability to support the troops would have been significantly curtailed.

18th Engineer Brigade. The 18th participated in Operation Provide Comfort, the coalition effort
to provide humanitarian relief to the Kurdish people of northem Iraq in the wake of the Guif War. The
brigade’s experiences were reported in COL Stephen A. Winsor and MAJ Stephen D. Austin’s article “The
Engineer Role in Helping the Kurdish People” (Engineer, October 1991). The brigade had responsibility
for all engineering in the region and coordinated the efforts of about 2000 personnel from three coalition
countries, including the U.S. 94th Engineer Combat Battalion (Heavy), the U.S. 133rd Naval Mobile
Construction Battalion, the 51st Field Squadron from the United Kingdom, the 11th Engineer Relief
Battalion from the Netherlands, and elements from the USAF 564th Civil Engineering Squadron.

The tactical area of operations for Provide Comfort was quite large: 250 thousand by 80 thousand.
Besides managing the engineering activities of the primary relief mission, the brigade was also responsible
for providing the sustainment engineering support required by the joint task force (a division-sized force
with over 15,000 troops from six countries) and for providing mobility, countermobility, and survivability
engineering support should the Iragi Army attack from the south.

The brigade planned and managed the construction of ten transient camps, four of which were
completed. The brigade also repaired and maintained a coalition-damaged runway at Sirsenk Airfield to
allow C130 airlift operations and managed work by the Seabees in repairing 25 kilometers of a critical
roadway needed to facilitate movement of 130,000 refugees back into Iraq from camps in Turkey. Each
relief camp was designed to handle 21,000 refugees. Tents provided the facilities for housing, food
storage, health care, administration, security, and logistics. Soldiers constructed streets (9 kilometers per
camp), erected tents, and put up fencing and lighting. Latrines, the water system, and food warehouse
facilities were contracted through the U.S. Army Engineer Group (TUSEG) of the Corps of Engineers’
Europe District. The brigade worked with TUSEG to provide quality assurance of contractor operations.
The heavy influx of refugees overwhelmed contractor efforts, however, and troops were used to expedite
latrine construction to avert life-threatening sanitation problems.

The command established several guidelines for infrastructure and construction. To be accepted
andusedbymeKurdnshpeople.thereliefcunpshadmhedes:gmdmaccommodatenmportantculmral
and religious considerations and had to be easily taken over by civilian relief organizations. In that regard,
the brigade coordinated with the United Nations High Commission for Refugees and thc Intemational
Relief Commission, which eventually took over relief camp operations. Other guidelines followed
standard doctrine that all construction be temporary in nature and be designed to be economical and easily
constructed.

Lessons leamed during Operation Provide Comfort were:
» Engineers need to deploy early and in sufficient strength to do the job,

» Better contingency engineer packages need to be developed to allow for quick tailoring to
specific needs and rapid deployment,

* An efficient, onsite contracting capability is very important,

e Class IV materials should be centrally managed to ensure that highest priority needs for scarce
resources are met.
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Peace Time Activities

Army engineer units have deployed several times recently to help with cleanup operations following
major storms, including hurricanes in South Carolina, Florida, and Hawaii. Many of their experiences
have been reported in Engineer magazine. From the command and control perspective, these experiences
are strikingly similar to those of engineers deployed for Operation Desert Storm.

Hurricane Hugo (reported by MAJ Jeffrey R. Sommerville, “After the Storm: Military Engineers
and Hurricane Hugo,” Engineer, July 1990).

In the wake of Hurmricane Hugo in 1990, 1500 engineers from the South Carolina National Guard
and Ammy Reserve, active duty soldiers, and Corps of Engineers worked as a team in area damage control
operations. The engineers had to clear their own way into the region, arriving before local command and
control was established. They had no communications network, the extent of damage was unknown, and
work priorities had not been outlined. In the most extensively damaged areas, military engineers
performed the following tasks: clearance of trees, especially on power lines and roadways; clearance of
rubble, especially roofing material and damaged vehicles; removal of sand deposits on roads; repair of
erosion breaches around bridges and culverts; and support of landfill operations. Work was assigned to
the military through county emergency operations centers. The engineers worked day and night shifts,
scheduling use of some of the equipment around the clock but limiting others such as chainsaw operations
to daylight hours for safety reasons.

Engineers working inland where damage was more sporadic had a problem keeping their platoons
busy and had to do a great deal of reconnaissance. Because power had not been tumed off in the inland
regions, power lines could not be cleared until power companies inspected the area to make sure live wires
did not endanger work crews. The engincer relief effort was also hampered by the lack of maps
containing sufficient detail to support operations and by the difficulty of moving around in the devastated
area, first because of the damage and later when local traffic was heavy and traffic control measures had
not been retumed to service.

Hurricane Andrew (reported by LTC Peter Madsen and MAJ Wayne Whiteman, “Responding to
Hurricane Andrew: The 10th Mountain Deploys to Florida,” Engineer, February 1993, and by MAJ Robert
M. Raiston and LTC Douglas L. Hom, “Engineers Respond to Operations Other Than War,” Engineer,
April 1993):

Shortly after Hurricane Andrew struck south of Miami in August 1992, the 10th Mountain Division,
Fort Drum, NY, received a “be-prepared” mission and immediately began analyzing the situation as it
unfolded. One of their leading problems was deciding how large a force to deploy and what kinds and
numbers of equipment to send.

Ultimately, a large number of engineer units deployed for disaster relief in the wake of Hurricane
Andrew. They coordinated their efforts with USACE, Jacksonville District, with Federal Emergency
Management Agency (FEMA), and with state and county officials. Initially their work involved clearing
debris from roadways, and then clearing areas to establish and operate disaster assistance centers, life
support centers, feeding sites, and relief camps. They also addressed the support of basic infrastructure
operations: restoring power, helping to manage overburdened landfill operations, and inspecting facilities
for structural damage. Those tasks were eventually replaced by the need to clear debris from schools and
prepare them for opening day, requiring extensive electrical and interior work.

16




Damage to the area and the large number of homeless made finding living space for the units
deployed in the region very difficult. Delays in construction of relief camps were caused by indecision
of local officials regarding which building codes to follow and by a lack of key engineer equipment left
behind during deployment.

Hurricane Relief Lessons Learned (reported by MAJ James R. Brannon, “Lessons Leamed:
Disaster Assistance Missions,” Engineer, February 1993):

Engineer experiences in hurricane relief efforts during the early 1990s all indicated a need to pay
attention to three important problems areas:

» The difficuity of tailoring the right combination of forces and equipment to respond quickly,

» The scarcity of building supplies and construction materials in a disaster area, mainly because
of the high demand and because many of the commercial suppliers (lumberyards and hardware
stores) may be closed or destroyed,

* The complexity of coordinating with multiple, overlapping govemmental and regulatory
agencies in a particular geographic region during a disaster, including public utilities, police and
fire jurisdictions, and hospital districts.

Nation Assistance

Operation Restore Hope (reported by MAJ James R. Brannon and Mr. Vemon Lowrey, “Lessons
Leamed: Somalia and Operation Restore Hope,” Engineer, April 1993):

The 41st Engineer Battalion (Light) was among several engineer units involved in Somalia when
American forces were deployed to provide a secure environment for nonmilitary relief efforts. Engineer
missions included base camp construction, road and airfield repair, and utilities support. Host nation
resources were severely limited and long lead times were required to establish an adequate flow of Class
IV materials. Unlike relief efforts in the United States, special measures were required because of the
extreme poverty of the host nation. Crowd control at feeding centers was a major concern, and special
construction methods were required to prevent theft of component materials, such as welding bridge
decking into place. In addition, military unit waste and trash was often seen as valuable by local
inhabitants, presenting safety and health problems. Waste management procedures also had to address
environmental issues related to spill preveation and the proper disposal of hazardous materials.

536th Engineer Battalion (reported by Specialist Bob Blocher and CPT Louis Herrera in “Army
Engineers in Bolivia,” Engineer, March 1990):

The 536th Engineer Battalion deployed in June 1989 to Potosi, Bolivia, as part of the Joint Chief
of Staff exercise Fuerzas Unidas 89 on a 90-day nation-assistance mission to expand the use of Potosi
airport to commercial airliners. The mission involved removing the top of a mountain near the airport to
improve the glide path to the landing strip. The engineer task force also included Seabees from the Naval
Mobile Construction Battalion 40 and an Illinois National Guard medical team as well as a Bolivian
engineer company and infantry company. While Army and host nation engineers set about the task of
removing the top of the mountain, the Navy Seabees conducted civic action projects in the region,
including construction of a school house and repair of community buildings.

As with Operation Desert Storm in which the desert itself was a major enemy to overcome, troops
working in the austere mountain environment had much to leam about coping with the terrain and climate.
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The high altitude of the worksite forced adjustments in work schedules, and four of the 350 soldiers
deployed to Potosi had to be evacuated because of altitude sickness. Mission planners underestimated the
effect of the rocky terrain on work schedules, especially the impact of having to dig out and haul many
large boulders. The boulders caused shifts in dump truck loads that could break the drive shaft, and dozer
end bits had to be replaced frequently. The supply line for repair parts for the equipment was “paiufully
long.” Maintenance crews were forced to cannibalize parts from one broken piece of equipment to repair
another and to weld broken parts back together instead of replacing them. At one point, the fleet strength
dropped as low as 60 percent.

To meet the original schedule, a second work shift was added to the task force, and the schedule
was altered to include a night shift whose work improved the efficiency of daytime operations. The
mission was completed on schedule, but, in the process, the original construction plan was completely
reworked, including major changes in labor and equipment, in scheduling, and in construction procedures.

84th Engineer Battalion (reported by CPT Kevin S. Porter in “Building to Last in the Tropics,”
Engineer, January 1991).

In 1990 a vertical construction team from B Company, 84th Engineer Battalion, deployed to Mirpur,
Bangladesh, to build three school buildings for the town. Though the mission was a relatively simple one,
the construction team experienced many of the same difficulties of a major deployment: coping with
austere terrain and climate, using inadequate, unfamiliar equipment, having to change original construction
plans to overcome deficiencies in equipment and supplies, facing the difficulties of inferior contractor
workmanship, coordinating closely with the host nation, and being prepared to deal with the impact of
local cultural requirements.

Though brick is the most plentiful building material in the Mirpur area, local bricks cannot endure
the rains and floods of the monsoon season. So concrete was chosen as the main building material, and
crushed bricks were used in the place of aggregate, which is not available in the region. Only a small
mixer was available to prepare the concrete, so the building design was altered to use precast slabs which
could be hand emplaced. The roof slabs were positioned with a Chinese-made crane.

A local contractor fabricated the precast concrete components. His inexperience with the techniques
required by the design specifications led to the delivery of inferior products that could not pass the load-
bearing requirements of the structure. The engineers had to adjust their design to use steel plates to
reinforce the purlins supporting the roof. In addition, other design changes were made to lower the cost
of the structures because of the high expense of building materials in the country and limited funds for
the project.

The climate presented other problems. The 100-degree heat caused the concrete to dry to0o quickly,
requiring many extra manhours to carry water by bucket to keep the new concrete wet. The extreme heat
also forced changes in the schedule because of the decreased ability of workers to sustain their efforts for
an entire work day. To add to the schedule problems, planners had not taken into account the impact of
Ramadan, a religious fast observed by the Moslem soldiers in the Bangladesh platoon. Productivity was

hampered by the effects of the required religious fast.

412th ENCOM in Central and South America (reported by MAJ Robert Bottin and Major Jimmy
Fowler, “Reserve Engineer Command: Helping Latin America,” Engineer, November 1992):

The 412th ENCOM supports U.S. Southem Command (SOUTHCOM) operations in Central and

South America. The goals of nation assistance efforts in this theater include preservation of stable,
nonrepressive, democratic national governments and cessation of illicit drug trafficking. The 412th acts
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as an extension of the SOUTHCOM engincer staff, assisting with the development of engineer work
estimates, engineer annexes to ambassador country plans, engineer construction management plans, and
engineer force structure plans. Since 1990, teams have deployed to 11 countries in the SOUTHCOM
region and have evaluated construction projects for airfields, roads, bridges, water supply/sanitation
facilities, ferry dock terminal and river port facilities, well drilling, and water supply quality control.

Country deployment teams consisting of two or three officers and one NCO conduct site inspections
and prepare work estimates for potential nation assistance and counter-drug projects. The work estimates
include a description of the project, scope of work required, the general priority of the project from the
perspectives of the host nation and the country team, descriptions of how the project relates to the
ambassador’s goals, and general construction specifications. An example of one of these work estimates
is included at Appendix B. Engineer Construction Management Plans (ECMPs) are being developed to
summarize engineer requirements specific to a host nation or SOUTHCOM campaign area. The ENCOM
will recommend engineer forte structure requirements for each ECMP, including assessment of host nation
capabilities as well as U.S. military and civilian capabilities. To do this, the 412th works closely with
SOUTHCOM'’s engineer office in Panama, Forces Command, the host nation, and Mobile District, Corps

of Engineers.

Nation Assistance in Honduras (reported by CPT Neal T. Lovell in “Lessons Leamed,” Engineer,
July 1990, and by CPT William J. Penny and CPT Paul D. Cramer, “Living with Foreign Commercial
Construction Equipment,” Engineer, November 1992):

Military engineer units have been involved in humanitarian construction projects in Honduras for
several years. They have discovered that determining the right mix of equipment for the mission is a
complicated task. Terrain plays a big role in limiting the choices in the type of equipment that can be
used. For example, hairpin curves, steep grades, and the general condition of the roads impact both speed,
safety, and vehicle maintenance for cargo trucks and tactical tractors.

Foreign equipment is now being leased by engineer units in Honduras, Bolivia, and elsewhere, and
the use of foreign equipment appears to be an increasingly viable method of augmenting table of
equipment (TOE) equipment in some circumstances. Problems have arisen with the use of leased
equipment: operators are not as proficient in using unfamiliar equipment with nonstandard controls as they
are with the TOE equipment on which they have trained; operator and maintenance manuals are not
usually supplied with the equipment; equipment capability and reliability are generally not up to military
standards; replacement parts for equipment repair may be difficult and time-consuming to obtain. These
problems may have a potentially large impact on military construction planning and point to the need for
more adaptive planning methods than are currently available.

As with other engineer operations in third world countries, procurement and control of materials is
a major problem. Poor contractor reliability in meeting delivery schedules and poor construction material
quality caused many project delays. Standard materials may be in scarce supply, and theft and population
control around base camps, work sites, and equipment parks are major problems.

Common Elements in Recent Experiences
The recent experiences of military engineers involved with theater construction, disaster relief, and

nation assistance have a number of common threads running through them. These common threads shape
the context in which sustainment engineering missions must be planned, managed, and performed. As
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such, they are key factors in determining how the ITCM system will be designed and, ultimately, how it
can be used. They are:

1.

2.

The requirement to respond with little prior waming to a crisis situation.

Uncertainty about the possible mission requirements and the engineer force needed to meet
them.

Chaotic initial conditions leading to uncertainty about what must be done and by whom.

Coondination required between multiple command levels and with many nonmilitary
organizations.

Operations involving large numbers of equipment and personnel and a variety of technically
complex tasks.

Designs, schedules, and priorities greatly affected by local conditions, especially terrain, weather
and climate, regional infrastructure, and enemy.

Dependence on the use of contracted equipment that has not been trained on or maintained to
military standards.

Inability to obtain quality Class IV supplies in sufficient quantities and in a timely fashion from
local suppliers.

Difficulty in prioritizing and controlling the use of scarce supplies across a large area of
operations.

10. Many unexpected hindrances to and changes in planned operations.

11. Missions accomplished in austere and frequently dangerous environments.

12. Operations frequently constrained by legal, cultural, and environmental concems.

These factors and their influence on the ITCM design will be elaborated in later chapters.

Summary

This chapter described the tasks that fall under the sustainment engineering mission, including a
summary of the types of tasks that doctrine identifies as being in the mission area and the functional
capabilities required to plan and manage the performance of those tasks in a theater of operations. Recent
experiences in the field were cited to indicate the range of tasks that are actually performed, the size,
number, and type of tasks that are typical of certain deployments, and the circumstances under which the
work is done. This information is the foundation for determining the functional capabilities that will make
ITCM most useful to the military engineers who plan and manage sustairment engineering operations.




3  CURRENT AUTOMATED SYSTEMS

Introduction

Current commercial software packages support many of the functional capabilities required to plan
and manage sustainment engineering operations. Among these are relational database management
systems, computer-aided design and drafting, project management systems, communications software, and
simple spreadsheet and word-processing tools. In addition, information about standard Army designs for
facilities and the labor, equipment, and materials required to build them is available in electronic format
in the Army Facilities Component System (AFCS). An carlier USACERL product, TCMS, combines a
broad set of this type of commercial software with the AFCS databases to form a single, user-friendly
software package that provides powerful new capabilities for the engineering staffs of EAC units.

Though powerful by the standards of software products of the early 1990s, the current versions of
AFCS and TCMS do not provide the type of automated sustainment engineering support that is possibie
in the present environment of software technologies. They also do not provide the type of automated
support that is compelled by the ever-increasing reliance of the military on the scamless flow of
information between networked desktop computers. Desert Storm proved that warfare has changed
dramatically in the wake of the digital revolution. Smart weapons and sensors, automated command and
control, wargaming in synthetic environments, and other electronic wonders will have increasing impacts
on battlefield pace and tactics. To succeed in this environment, military engineers need more sophisticated
software systems.

AFCS and TCMS represent the first step in the ITCM joumey toward more powerful automated
support of sustainment engineering. This chapter describes the structures of AFCS and TCMS, the
capabilities they provide, and the limitations of these current systems that highlight the need for the
continued ITCM research and development.

Army Facilities Components System (AFCS)

The processes used in the design and construction of facilities needed to support military operations
have a different emphasis than those used by the commercial world. Facilities are simple and austere,
designed to provide the needed functionality for 2 years or less, to use expedient construction methods,
and to require only easily procured, standard materials. The Army’s theater construction follows the
principle of minimality: use the least time, resources, and expense possible to accomplish the mission.
What makes theater construction so complex is not the difficulty of any single project, but the sheer
number of projects and the dynamic environment of shifting priorities, uncertain resources, and limited
time in which projects must be accomplished.

In the environment of a theater of operations, the construction planning and management process
works best when applied to a set of standard facilities with designs, labor/equipment/material requirements,
and work breakdowns planned and resourced well in advance. The system which makes this possible is
the Aty Facilities Component System (AFCS).

AFCS provides design information for the standard facilities required to support operations in a
theater of war. It includes the elementary construction, logistics, and planning data commonly needed by
military planners, supply agencies, and construction personnel at all levels, from strategic to operational.
AFCS provides facility designs and data for four different climates (temperate, tropical, frigid, and desert)
and two building standards (initial and temporary). Each facility in AFCS has a set of data associated
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with it: AutoCAD designs; a list of subfacility components down to the bill of materials (BOM) required
for construction, labor and equipment estimates (LEE) in terms of military occupational specialty (MOS),
horizontal equipment, and gencral manhours; and a list of the theater-oriented guide specifications (TOGS)
associated with its construction. AFCS also includes tables for linking specific Army units with their
facility requirements by their TOE type.

The AFCS data is structured in a building block approach, using items, subfacilities, facilities, and
installations. Items are generally construction materials with national stock numbers (NSN) that can be
procured through the Army supply system. AFCS has a table of items by NSN that includes the item
description, quantity and unit of issue, and weight, volume, and cost per unit. An AFCS item is anything
that can be ordered under a single number through the supply system. It may be as complex as a pre-
engineered building or as simple as a nut and bolt. A facility is a group of items designed to provide a
service, such as an administration building or an airport unway. An installation is a group of facilities
designed to provide a specific service or support to a military function, such as a base camp or a supply
depot. Subfacilities are treated as facilities but are usually non-standalone components that are aggregates
of assemblies common to many different facilities. Subfacilities aid the hierarchical decomposition of
more complex structures and are used to simplify the repetitive nature of the data. An example of a
subfacility is an end bay used for a number of warehouses of different lengths. Each such warehouse lists
only the subfacility (one record) for the end bay instead of the component items (doors, windows, framing,
etc., which would require many records repeated for each warehouse).

Huntsville Division, USACE, is responsible for building and maintaining the required AFCS design
documents and supporting databases, which are published in Technical Manuals 5-301, 5-302, and 5-303.
In recent years, this data has been digitized for use on a personal computer with commercial software
packages (e.g., AutoCAD for the designs and the dBase Database Management System for the associated
data). To assist with the use of the dBase files, Huntsville Division produced a program called Theater
Army Construction Automated Planning System (TACAPS). This program provides a look-up capability
in electronic form that overcomes the unwieldiness of the hardcover versions of the databases. TACAPS,
however, does not provide mechanisms for dealing with the hierarchical structure of the databases. For
example, it is not capable of rollups of bills of material or of combining facilities to form new types of
installations.

Huntsville Division updates their electronic files on a yearly basis and works continuously to ensure
that the facilities in AFCS represent the current doctrine, operational requirements, and construction
practices of the military engineering community. The existence of AFCS and the continuing support for
the maintenance of its data are key to ITCM research. Not many large system developments for the Army
have such a well-established source for input data.

Theater Construction Management System (TCMS)

In the late 1980s, USACERL began a project to capitalize on emerging software technologies to
support EAC engineer staffs in the complex processes of planning and managing theater construction. The
product of the research effort was the prototype computer application TCMS.

In the carly days of TCMS work, personal computer (PC) applications such as relational database
management systems and computer-aided design and drafting (CADD) were making great strides. The
speed, memory size, and storage capacity of PCs were beginning to grow at increasing rates, and access
to computers in the workplace became less and less of a problem as PCs began appearing on every desk.
Indeed, there was no doubt that the time had come to produce a user-friendly PC application for theater
construction management.
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The goal of the TCMS work was to demonstrate how a multifunction engineer planning and
management tool could be constructed by linking independent off-the-shelf software packages using a shell
program to manage the common data files and the user interface. The AFCS files were the source for
basic facility designs and data. Unlike TACAPS, which was designed primarily to ease access to the
AFCS facility data, TCMS was designed as a working tool to assist the entire process of designing and
imanaging the construction of actual facilities. With TCMS, an engineer staff could:

* Retrieve designs and dBase records for a facility from an AFCS reference library

* Associate a copy of an AFCS facility data set with an actual project

* Create new or modify retrieved facility designs, BOM, LEE, and TOGS

*  Group projects together and roll up BOM and LEE data

« Print a BOM for 2 facility, a group of facilities, or an installation

* Produce a construction directive and a hard-copy of design documents for a project

« Import projects into a project management system for scheduling and tracking, including using
CPM and Gantt charts

» Assign labor and equipment resources to a project
« Commit and level the use of resources across multiple projects
» Exchange data for projects with another unit via modem or floppy disk.

The functionality of TCMS was provided by commercial software: AutoCAD and Drawing Librarian
for the designs, Project Scheduler 5 for project management, PFS: First Choice for the construction
directive and other word processing, Close-Up for communications, and a library of dBase utilities for the
database management functions. The TCMS shell, which was the focus of the USACERL effort, provided
the user interface and managed the storage, retrieval, and formatting of data as it passed from one
application to another. For a complete presentation of the structure and features of TCMS, see USACERL
ADP Reports FF-93/13 and FF-94/13 (1993). Responsibility for maintaining and distributing TCMS was
transferred to the AFCS team at Huntsville Division in July 1993.

When it was completed in 1993, TCMS provided many valuable capabilities previously unavailable
to the engineer planner, But those capabilitics only whet the appetite for what has evolved through the
hardware and software environments during the years TCMS was being developed. The ITCM work must
proceed in the promised potential of these new tools (graphical user interfaces, software compatibility and
extensibility, database management, and computer modeling). Some of these tools directly address
limitations of TCMS and other tools (i.e., object-oriented programming, embedded simulation, artificial
intelligence, hypermedia information management, etc.) reach well beyond the basic functions of TCMS.
- The latter is addressed in Chapter 4. The recent advances directly applicable to limitations of TCMS are
addressed in the following sections.

Graphical user interfaces. When the original design decisions for TCMS were made, Microsoft®
Windows™ had only begun its climb to the level of popularity it enjoys today. MS Windows’ growing
capabilities in the areas of object linking and embedding (OLE), dynamic link libraries (DLL), and
dynamic data exchange (DDE) will be discussed under Software compatibility below and in Chapter 4.
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The discussion here is limited to the graphical user interface (GUI) used for most new PC applications
designed for MS Windows.

The TCMS shell is a DOS-based program using a text display. As such, it is severely limited in
the amount and type of data that it can display on one screen. Use of a GUI would allow multiple
resizable windows, scalable fonts, and menu icons. Within one of these windows, it is possible, for
example, to display a map of the theater and to overlay icons showing the location of units, projects,
supply depots, land features, etc. A mouse click on an icon provides a natural way to access data about
the item represented by that icon, and the display of the spatial relationships provides much more
information than a multitude of textual records. In addition, menu interactions are much easier for a
system user to understand when they are presented in the form of icons and dialog boxes instead of as
text-based commands.

Software compatibility. TCMS uses commercial software to achieve much of its functionality. It
makes sense economically not to have “reinvented the wheel,” but the approach has definite drawbacks.
For one, the commercial software available in 1990 was not designed to work with other software as
Windows applications are now being designed to do. This means that the TCMS shell must constantly
translate data from one application to another instead of relying on software standards for data exchange
between applications. If a TCMS commercial application is upgraded in a way that changes the format
of what is used for its imported data, TCMS will require code changes to maintain its compatibility.
Indeed, the original choice of the commercial software was limited by the ability of candidate packages
to import data structured by the TCMS shell. TCMS users are required to use the specific commercial
software originally chosen for TCMS, even though they might be more familiar with a similar package
from another vendor. Chapges in the way software is designed today eliminate many of these problems.

Software extensibility. The architecture of TCMS makes expanding its capabilities difficult. The
TCMS development process was constantly haunted by the 640K DOS limit on memory—a problem that
MS Windows and its pending successors (Cairo, Chicago, NT) overcome. Even if memory were not a
problem, managing the complexity that comes from adding functioris would be an extremely difficult task
because the architecture itself cannot support expansion easily. An example of a much needed new
capability would be the management of resources, whether personnel and equipment or supplies.
Expansion of the system to include this capability would necessarily require linking the facility data and
the project schedules with a new database for resources. These three functions would be extremely
difficult to integrate because the linking of the data is tightly connected with the inner workings of the
project management software over which TCMS has little control.

Database management. TCMS was designed to proceed through the facility design and construction
processes in a forward direction. As a planning tool, TCMS leaves too much off-line calculation to the
user to answer some fairly common questions. Examples:

» What will be a unit's demand for a specified material/job skill/piece of equipment within a
specified time frame?

¢ What materials may be in extremely short supply?
*  What labor and equipment mix best corresponds to a given unit workload?
* What is the impact of delayed material resupply on the construction schedule?

« Is the project schedule consistent with established priorities?




These types of questions require an ability to query the database in ways unavailable in the present system.
Even more basic questions cannot be answered because key data is not in AFCS nor is it added in TCMS.
An example of this is a data ficld that states how long it should take to construct each facility under ideal
conditions. The labor and equipment hours give an approximation but cannot account for concurrent/
sequential efforts. Having an ideal construction time associated with each facility is the first step in
moving toward an automated process for adjusting the construction time to account for the impacts of
weather, terrain, equipment shortages, and the like.

The AFCS databases are complex enough in their structures to make general querying by an end
user difficult to accommodate. A typical query of AFCS's relational databases requires recursive accessing
within a single table and the linking of records from one table to another—not an easy task. Restructured
data that accommodates the hierarchical decomposition of the installations and facilities and uses common,
inherited methods to process queries has a much better chance of being accessible to an end user.

Such a structure is possible in object-oriented programming (OOP). With the OOP paradigm, the
software closely models the attributes, relationships, and behaviors of the entities of the system itself and
simplifies the representation of hierarchical structures and inherited behaviors. OOP methods could add
new perspectives to the current “elemental” representation of facilities, materials, labor, and equipment.
For example, structures could be added to represent an entire engineer unit and to link its resource
capabilities, workload, and schedule to the more elemental-level objects (e.g., project, occupational
specialties, pieces of equipment). This ability is particularly important to modeling the strategic, long-
range view of higher level units where details blur and a lower resolution perspective is required.

Computer modeling. An earlier paper (Appendix C) considers the appropriateness of the methods
of CPM/PERT in managing theater construction projects. CPM/PERT methods are the standard project
management approach, and PS5 uses such a method for that aspect of TCMS. The CPM/PERT objective
is to determine the scheduling and resource requirements for a project to achieve a desired project
completion time, and the methodology does not adapt well to changes after the original schedule is set.
The case studies cited in Chapter 2, however, clearly indicate that theater construction is an extremely
dynamic process where effective use of resources may take more priority as an objective than the well-
timed completion of a task and where changes in mission and priorities are the only constants. As
indicated in Appendix C, a new methodology that proceeds from goal decomposition to altemnative courses
of action and identifies the conditions for choosing a particular course of action in an evolving situation
is a key ingredient to the automated support tools of ITCM. Appendix C contains excerpts of a study
performed by CPT Clarence C. Tumer for his master’s thesis, which shows that even the units below
platoon level involved in construction will benefit from better planning support in an integrated modeling
system allowing controlied communication up and down the chain of command.




4 ITCM INFORMATIONAL AND FUNCTIONAL REQUIREMENTS

Introduction

This chapter discusses the implications of the key elements of sustainment engineering operations
identified in Chapter 2 and how those elements not only help to define the informational and functional
requirements of ITCM but also indicate that the conventional methods for providing some of this
functionality are inadequate. Later sections identify the emerging technologies that will provide the tools
to construct software modules to provide the required capabilities for a full ITCM system.

Key Elements of Sustainment Engineering Operations

The 12 key elements characteristic of sustainment engineering operations that were identified at the
end of Chapter 2 can be summarized briefly: The sustainment engineering mission requires that a great
many independent, complex tasks must be planned and performed quickly under extremely uncertain
conditions and unpredictable resource ievels and must be coordinated with a large number of organizations
both within and outside of the military engineering community.

Even though a single theater construction project is generally simple by commercial construction
standards, sustainment engineering is a very complex endeavor taken across a support area comprised of
numerous projects. Planners require considerable amounts of information to support the development of
project details not typically considered in commercial construction. This includes regions! information
regarding infrastructure, climate, terrain, enemy posture, host nation resources, and relevant treaties, laws,
and regulations. It includes engineering, geographic, and technical data. It includes force structure data,
operations schedules, and standard procedures. The information may be in the form of text, electronic
databases, tables, charts, graphs, maps, pictures, videos, etc. A large portion of the planning process
involves simply gathering and digesting the necessary information. High speed data storage devices and
hypermedia information management technologies are availabie to help process online information. The
scope and quality of online information itself is expanding rapidly in all directions.

As stated in Chapter 3, the information included in AFCS is an invaluable source of facility data.
While AFCS provides a standard set of facilities from which to begin a facility plamming process,
adjustments must be made to account for local conditions, time constraints, and the availability of
resources. Currently these adjustments are made by hand caiculations as the need for them arises. These
adjustments have information requirements regarding regional conditions, resources, and the sensitivity
of the LEE and BOM data to the impact of climate and terrain. The adjustments to the original data and
the assumptions involved in making them tend to be lost since planners lack an easy-to-use mechanism
to record them. Engineer staffs aiso lack a good way to record the altemative courses of action considered

as the project proceeds from planning to execution.

The requirement for carefully recording as many details about each project as possibie is needed to
support the more difficult tasks of managing a large number of simultaneous projects with multiple levels
of dependencies and of coordinating the use of limited resources to accomplish them in an environment
of constantly changing priorities and resource levels. Good planning requires that the project objectives
and assumptions be known and checked frequently against evolving conditions. In the typical wartime
situation, project responsibility will move along the chain of command through the hands of many
decisionmakers, and no single person will know or remember all of the details. An automated system
should support documenting these project details in a noncumbersome way so that decisions are made with
full knowledge of what has been decided previously. Ultimately, the system itself should be able to detect

26




inconsistencies. At the very least, projects should be linked to the top-level objectives they were designed
to meet 30 that changes in top-level objectives rapidly filter down to project decisions and progress on
individual projects rolls up to a measure of progress on the overall objective. This is far more than current
project management systems are capable of doing.

Project management systems using CPM/PERT methodologies are not adequate for the dynamic
conditions of theater construction. CPM/PERT methods were created to manage single large projects
having multiple parallel streams of development. The original uses of CPM/PERT were to coordinate
work being done by independent contractors. The method concentrates on identifying tasks critical to the
completion of the overall project within a predetermined time and treats resources secondarily. Also, it
assumes that all tasks are required and does not provide any way to represent alterative courses of action
and the conditions under which a specific course of action might be taken. Tasks have only a
predecessor/successor relationship, which is not flexible enough to represent tasks which are spatially
related (crder of performance is inconsequential, but work cannot be done simultancously because crews
interfere with each other); tasks that are scheduled on the basis of safety and/or efficieacy (for example,
pouring concrete or blasting only at certain times of day); or altemnative tasks from which one is chosen
according to a stated condition at the time of performance. Finally, CPM/PERT methods do not handle
change well; any change in the original plan requires that the entire network be reworked.

The CPM approach to project management is so prevalent that the idea of integrating resource
management as an equal function seems almost unnatural. Yet the case histories cited in Chapter 2
indicate that resource planning and management are primary functions of EAC staffs. Determining the
engineer force structure required for meeting mission requirements is one of the most difficult tasks in the
predeployment stage. Arranging for transportation, leasing of equipment, scheduling maintenance and
repair, and adjusting project schedules to account for equipment limitations are all activities which rely
as much or more on resource management functions as on project management functions. Limited supply
inventories and unpredictable supply deliveries through local procurements are major reasons for adjusting
facility designs and schedules. At some point in the supply cycle, engineers assume responsibility for
managing material inventories. Indeed, the extreme limitations on Class IV supplies are frequently the
deciding factor in determining whether a project is even scheduled or not. In theater construction,
determining what must be done is so intimately connected with what is available to do it that any good
model of the process must treat project management and resource management as one integrated whole.

The processes of project and resource management at any specific unit level could be handied,
though perhaps not without a great deal of human effort, by traditional methods. But the requirement
to communicate project and resource information across multiple command levels places stringent
conditions on the structures used and the consistency of the functions that operate on them. In a given
theater each level of the command hierarchy uses data relevant to the same assigned mission, but that data
varies in its resolution and use at each level of the hierarchy. The hierarchical decomposition of the
entities, attributes, and functions related to EAC operations is the key to the structural design of ITCM.
These issues will be discussed in the following section.

The Hierarchical Structure of the Problem Area

The sustainment engineering effort in a theater is inherently an effort of many contributors at various
echelon levels, The actions take place within a time continuum, adapting to respond to a continuously
changing environment. This section will focus on the hierarchical nature of the activities, and the fact that
they change as the effort matures. For the purposes of this study three generic task levels were identified:

strategic, operational, and project.




While many aspects of the Army organization and warfighting doctrine may change over time, the
generic requirements of performing fundamental tasks from the strategic, operational, and project
perspective will remain, regardless of who will be charged with responsibility for them. The functionality
of ITCM should allow for the reassignment of generic tasks to the relevant unit (which may change over
time).

The focal areas of the hierarchical levels, which are shown in Figure 2, are now compared and
contrasted without descending to a level of unnecessary detail. At the strategic level, plans are initially
developed about goals and mission requirements for sustainment engineering based on directives of the
Theater Commander. To satisfy the goal and mission requirements (which contain many temporal
constraints) plans about force organization and resource acquisition and allocation must be made within
an assumed scenario (set of assumptions and knowledge about the theater infrastructure, terrain, and
environment) while making priority trade-offs, based on limited resources. From the resource plans follow
the logistical requirements. Schedules and timetables are further derived taking into account the temporal
mission constraints.

At the operational level the focus is on the sustainment engineering activities required to support
the strategic goals. The emphasis is on the list of facilities to be provided (at carefully selected locations;
and other tasks to be performed, given the timetables derived from the higher level requirements. Specific
resources have to be identified and assigned to specific tasks. Supply inventories have to be projected and
monitored. Overall progress of the work and the productivity and well-being of the performing units must
be monitored. The local weather, geography, and other relevant conditions must be taken into account
for making projections of future requirements and work.

Project level concems include the design of facilities, or adaptation of designs and specifications to
local conditions, and an estimate of required materials and labor. Once assigned to the performing unit,
its leader must make an analysis of the required work, usually in terms of a work breakdown structure,
and schedule the tasks to comply with required timelines. Tasks are assigned to individuals, or groups
of individuals, who are responsible for performing the work.

Figure 2. Levels of Planning/Management.
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This brief description of the three hierarchical levels highlights the distinct differences in the focus
of each level. Yet, from the theater point of view, it is a unified process serving to accomplish the
sustainment engineering mission. To provide the needed unification of the support provided at the various
levels, a consistency of data is required across the hierarchical levels.

Data Consistency

Different levels in the hierarchy must be connected by a consistency of data. For example,
uncertainty about the amount of Class IV material at the strategic level may be reduced by a more detailed
analysis of the number and type of facilities needed at the operational level. Uncertainty about the
quantity of material needed for a site-adapted facility must be determined at the project level. The roll-up
of information from one level to the next must be effortiess and correct.

Data consistency is required for a number of different capabilities. First, during initial strategic
planning, it is desirable to use roll-ups of historical data to make the high level plans more accurate. It
may also be necessary to perform recursions to arrive at the final plan. Second, once the strategic plan
is finalized, the high-level plan should be decomposed into lower level goals in a manner that would allow
roll-up of the subgoal data to the original one. This capability will enable more timely and accurate
. progress control. Third, data consistency is required to use the system as a wargaming simulator.

Taking initial strategic planning as an example, much of the information used in the planning
process, as well as assumptions incorporated into the plans, are uncertain. Some of the uncertainty is due
to inherent uncertainty about future theater conditions or occurrences, but a significant proportion of
uncertainty is a result of the high-level information view used at the strategic phase. The latter type of
uncertainty can be alleviated by moving down successive levels into a more detailed view of the
information, through analysis, or historical information. Once historical information is available in a
compatible format, the planner can accept historical data as the default, or check the analysis against
historical data.

Consistency is similarly required for comparisons of initial plans with what is actually transpiring.
Any significant discrepancy must be explained satisfactorily as to the cause, which typically will require
analysis at levels more detailed than the discrepancy. To provide the needed detail, the fundamental input
for the system must be at the lowest level performing unit. This assertion may be obvious to some
readers, but since this is a drastic break with past practice, we offer the following discussion in its support.

Support for Performing Units

Current information systems used to support sustainment engineering, whether manual or automated,
are primarily designed as upward reporting systems. In some cases there are numerous reporting systems,
requiring a duplication of input. Also in many cases, by the very nature of the system, the person
performing the input views the use of the information with suspicion, not knowing who will be using it
or for what purpose. Our premise is that systems which are designed solely as upward reporting systems
will fail in the long run, since the input will not be consistently reliable.

The solution is to design a system that will span the hierarchy levels and specifically provide
planning and management support to the performing units. Only if the system is a tool to help the
performing units perform their own tasks better will it be used in a manner resulting in consistently
reliabie data. The question then is: Does the performing unit need automated support in planning and
managing tasks? Through a study performed by CPT Clarence Tumer as part of the requirements for a
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Master of Science degree in industrial engineering, ample evidence was found showing that performing
units do indeed need automated support in planning and managing tasks. Appendix C contains excerpts
from CPT Tumer's study.

Evolving Hardware/Software Technologies

A big force driving the development of automated support for sustainment engineering is the
potential for improved operations offered by the sheer number and power of new hardware and software
technologies currently available or promised in the near future. Those current or emerging technologies
expected to have an impact on ITCM are outlined below:

Handware. A number of new products are currently on the market that greatly improve the speed,
memory capacity, long-term data storage volume, high-speed communications, and portability of personal
computers. These include 486-based notebook computers with 20 MB RAM memory and high-resolution
color display, high-capacity removable hard drives, portable triple speed CD-ROM drives and optical disk
drives with removabie high-capacity disks, portable laser printers, GPS devices which link directly with
mapping software, color digital cameras capable of direct image downloading, and high-speed modems.
An entire set of these items could be packed in one small, lightweight case and casily transported. All
of these items have come on the market within the past 5 years, and it is probably safe to say that they
will be overtaken by more sophisticated equipment in a very short time. This trend of ever-improving and
mwmmmmmmmammummmwm
the ITCM application. Wbmmymyoﬁummpudmpom they also come
with an overhead of more complicated administration and training requirements. Experience with
introducing the original TCMS into engineer units indicates that the simpler, more familiar PC is the more

acceptable option.

mm The eventual victor in the operating systems war cannot be predicted as of this
writing. Microsoft DOS™ mduﬂyﬁummmmoqmofmmyamm
and the multiprocessing requirements of many users. Microsoft DOS™ with Windows 3.1 overcomes some
ofﬂwmmmmmmmmmmmwdm Microsoft
Windows NT has been released only recently but appears to compete favorably with UNIX. In choosing
an operating system at this point, technology will not be the deciding factor. The choice must be the
system that has the most solid corporate backing. Microsoft’s dominance of the software market and the
almost universal acceptance of Windows 3.1 indicate that Windows NT and its still unreleased companions
(Cairo and Chicago) will eventually claim the lead.

v , -1 nments. Without a doubt, OOP is the only acceptable approach
fornewooﬁwuedevekman. Wmuwmmmmmofmmm One
of its biggest advantages is the possibility for software reuse. Because of the availability of a large
number of commercial C++ class libraries to support many of the functions required for the ITCM system,
C++ has been selected as the programming language. Several strong C++ contenders include Borland and
Microsoft. Indications are that Microsoft Visual C++ will be well supported by vendors producing C++
class libraries. It should also be the easiest to use in building applications for Microsoft’s Windows-based

operating systems.

Commercial C++ Class Librarics. The following packages offer capabilities that could be added
to the ITCM system without the requirement for extensive programming. They are currently available for
Windows 3.1 and will soon support Windows NT. Part of the ITCM research involves studying the
degree of difficulty encountered in attempting to integrate all of these packages into one application.
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Microsoft Visual Consrol Pack by Microsoft Corp., released 1993, offers 19 programming shortcuts
for Windows including access to 3D interfaces, charting, and serial communications; allows the user
to add multimedia or Windows for Pen Computing functionality by adding custom controls to
Visual C++ or Visual Basic Toolbox.

Essential Graphics Chart (V.4.0) by South Mountain Software, Inc., released in 1992, provides DLL
for adding 2D and 3D charts to Windows applications and allows use of chart library from any
Windows APl compatible language including C and C++.

TerraView for Windows by TerraLogics, Inc., released in 1991, provides object-oriented cartographic
display tools designed to link to information in existing databases and to create new map-based

systems; allows users to treat maps and data as objects and integrate mapping functionality into
current applications.

ObjectStore for Windows (V.2.1) by Object Design, Inc., released in 1993, is an object-oriented,
C++-based DBMS for implementing large-scale, data-intensive design applications.

Style for C++ for Windows by Software Ingenuities, Inc., released in 1992, provides a class library
that manages all associations and links between C++ objects and facilitates building C++
applications; includes consistent paradigm, traversal functions, built-in traversal cycle protection and
built-in integrity checking; supports object sequencing, multiple inheritance, recursive structures,
user-defined condition handling and dynamic memory management.

Meijin++ (V.3.0) by Network Integrated Services, Inc., released in 1993, provides a C++ modeling
and simulation class library that reduces complex models to collections of interacting entities to
study behavior through simulation runs.

Object/Engineering for Windows by ImageSoft, Inc., released in 1993 . provides a C++ scientific
class library, including numerical analysis, semi-persistent containers, discrete-event simulation,
exception handling, signal processing and time series, statistical tests and random generators.

Rete++ by Haley Enterprise, Inc., released in 1993, uses the Rete Algorithm and C++ to integrate
rules and objects. Rete++ extends the intemational object-oriented programming standard to support
production-rule programming syntax. C++ applications can use Rete++ generated classes directly
or can further subclass them as needed.

ImageMan (V.1.06) by Data Techniques, Inc., released in 1993, provides an object-oriented
Windows library that allows developers to add advanced image display and print capabilities to
Windows applications; allows applications to access all types of images with the same set of
standard function calls; supports TIFF, PCX, EPS, Windows Metafile and bitmap formats.

The ITCM Concept

The ITCM system must serve a number of end users and therefore must be able to function in a

distributed mode. Users with different staff positions at different locations on a network must be able to
access ITCM functions as they require and share data effortlessly with other users. ITCM users must also
be able to interface with other automated systems, especially for command and control and for logistics.

The complexity of the envisioned system would be difficult to manage using traditional software

development techniques. The object-oriented paradigm, however, is well-suited for this type of problem.
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While traditional programming methods treat functions and data as separate pieces, the object-oriented
approach brings the two together to model the real-world system as closely as possible. The entities of
the system are represented by objects with attributes (data) and behaviors (functions). The system itself
is modeled by its collection of objects and their interactions with each other, represented as messages sent,
received, and acted on. OOP features include inheritance, encapsulation, and polymorphism, all of which
allow the system developer to build evermore complex classes of objects from simpler ones.

The object-oriented approach offers a solution to managing the multiple perspectives of the theater
construction process. Each staff position and each level of the command chain looks at what is happening
from its own unique point of view. From mission generation to project design, from force structuring to
the assignment of labor and equipment to a project, from the management of supply inventories to the
delivery of project materials, the object-oriented approach offers the potential of managing the complex
interactions and relationships with relative ease.

The ease with which the object-oriented approach handles complex structures and behaviors means
that the ITCM system can be designed so that users will be able to access the project and resource
databases in ways that are not possible with relational databases. Difficult database queries that could not
be handled in TCMS should be easy to implement in ITCM. An object-oriented database management
system such as Objectstore provides the tools to build a persistent model of the sustainment engineering
world and to access the data in powerful ways.

A key ingredient to simplifying the role of the end user is to build an intuitively natural interface
with great reliance on graphical representation of the data. The use of C++ class libraries for building the
graphical user interface will speed the system development process. As has already been suggested,
displaying the “state of the world™ with maps and using that mechanism to select objects of interest from
the database should greatly simplify the user’s interactions with the system. Unlike geographic
information systems (GIS), which provide a shell in which databases may be embedded, the geographic
functions of ITCM will be designed as a subordinate module, working with but not dominating the
database functions.

The informational requirements of ITCM have already been mentioned above. High-volume storage
devices, hypermedia information management technologies, and the growing base of electronic information
all point to the possibility of adding online reference libraries to ITCM. In addition to gathering and
storing data from other electronic sources, end users will be able to use digital cameras and photo CDs
to build an online library of pictures that could be rapidly accessible.

Engineer teams regularly gather data about countries of interest. While visiting the country, they
check the availability and condition of roads, bridges, and ports, determine host nation capabilities and
material resources, and locate facilities that might be used to support military operations. With ITCM,
the information gathered during these trips, even photos, could be stored electronically and linked with
map positions, work plans, and supply inventories. ECMP under nation assistance programs could also
be stored in a more comprehensive, organized way using ITCM's hypermedia information management.
Appendix B contains a sample ECMP and illustrates how difficult it is to organize the information in a
text-based format. With a portable computer system, outfitted with digital camera and Global Positioning
System (GPS) device, an engineer team could build a comprehensive plan incorporating maps, photos, and
preliminary designs and estimates. Collection and distribution of planning data could be done
electronically, providing instant copies of pertinent information formatted for immediate implementation
in the management portion of ITCM.

Facility designs are as important to ITCM as they are to the current TCMS. AFCS is the Army
standard for theeater of war facilities. It will remain the source for standard facility designs and data for
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ITCM. The CADD functions required of ITCM will probably be provided by the MS-Windows version
of AutoCAD. ITCM must have functions to display AutoCAD drawings, overlay redlining, and manage
the storage and retrieval of files and their linkage with projects. Experience with TCMS indicated that
the project design process is so time and labor intensive that a separate machine must be availabie o
accommodate it. The ITCM system will be built on the premise that basic project data will be either
imported from AFCS standard facilities or created extemally and imported.

Commercial software such as CADD packages, presentation managers, word processors, or any other
application that performs a function required for ITCM should be usable with ITCM if the standards for
object linking and embedding are followed. Future software will be designed so integration with other
systems is easier to accomplish than was possible with the software that was available for TCMS. ITCM
will leverage commercial offerings wherever possible. But the tools in ITCM will move well beyond the
database, hypermedia management, and graphical interfaces mentioned thus far.

The most difficult problem for ITCM revolves around the need to manage large numbers of both
projects and resources in a dynamic environment. The standard CPM approach fails in that it subordinates
resources to projects, and it cannot handle even the simplest change. A new methodology must be
developed that models the human decisionmaking process. This will require adding intelligence to the
object base of ITCM. It will also require adding simulation capabilities. The premise is that the objects
of ITCM must be able to explore their evolutionary possibilities. Commercial C++ libraries exist to add
simulation and expert system capabilities. The methods for structuring these tools to work together
consistently have yet to be devised.

Envisioning the Future ITCM System

In 1990, Bill Gates, chairman of Microsoft, suggested that computers could place “information at
your fingertips.” He said that PC users should be able to access information “anywhere at anytime”
through an icon-based graphical user interface. He demonstrated applications that used OLE, DDE,
handwriting recognition, cellular communications, and multimedia. Those technologies are now in
widespread use. Today, efforts focus on voice recognition, “smart assistant” professional workbenches,
pocket-sized personal information managers, a nationwide information highway, and more.

With such rapid advances being made, it is difficult to imagine a function that a military engineer
would perform that could not be assisted by the use of a computer. In the future, each soldier on the
battlefield will have a PC, perhaps mounted in a helmet or in specially designed goggles. In the future,
cach commander will have a real-time view of the battlefield. And communications between command
levels will be limited in speed only by the human beings at the receiving end of the transmissions. In this
future world, military engineers will not be able to keep up with the pace of operations without their own
set of computer tools. Those computer tools must be designed to serve as individualized systems capable
of assisting each user with appropriate information and functions and of transmitting information to and
from others.

Though each user will see the ITCM system from an individual perspective, all such views will have
the same basic structure and differ only in emphasis, resolution, and scope. The structure of the typical
ITCM tool set for the general end user is illustrated in Figure 3. Each user’s system consists of a
reconfigurable tool set that is organizationally integrated but addresses operations from the individual
user’s perspective. Some examples will help to illustrate the concept.

For exampile, the system will track a heavy equipment operator’s schedule, provide GPS data for
information about current location and destination, list instructions for each task with animated illustrations
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Figure 3. The ITCM System Concept.

available to resolve technical issues, provide information about equipment specifications and condition,
and transmit status reports to appropriate headquarters staff members monitoring projects, personnel,
equipment, and materials.

For a battalion commander, the system will track projects planned and in progress, report status of
subordinate units, display the location of all pertinent entities on a digitized map, wam of projects that
deviate from planned activities or progress, track inventories of Class IV materials and predict shortfalls,
estimate future workloads, and permit wargaming of plans to identify potential trouble spots.

If the individual is the S4 in an ENCOM, the system will track supply requirements and inventories,
predict future supply requirements, provide information for locating and procuring supplies in country,
provide an interface with appropriate supply and transportation systems, and track supply transportation
and delivery.

For the Army component representative on a joint engineer planning staff, the system will provide
quick access to needed planning information (theater infrastructure, force capabilities, equipment specifi-
cations, facility requirements, etc.), allow strawman pians to be set up, documented, and wargamed, track
fund allocations and civilian and host nation contracting, and adapt plans automatically to adjust to
changing scenario requirements.




These examples are not exhaustive of the activities or responsibilities of the individuals cited, but
they do indicate the wide range of functional capabilities that are still to be explored if ITCM is w
accomplish its goal of providing an automated support system for EAC engineers in the next century.

These exampies only hint at the problems to be overcome. While the examples indicate that each
system would have the ability to communicate with other systems, they do not touch on the difficulties
of the type of scamless integration that is envisioned for the ultimate ITCM system. While these examples
indicate that tremendous amounts of information can be available to each user, they do not address the
challenge of devising a user interface that does not overwhelm and confuse the individual. While the
examples indicate that the system will provide functionality at all levels of command, they do not touch
on the problems associated with the requirements for data consistzncy across multiple resolutions. All of
these areas and more require further research if the ITCM system is to become a reality.
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§  CONCLUSIONS AND RECOMMENDATIONS

This report has examined the organizations, functions, and working environment of sustainment
engineering and has described how computers could be used to assist the planning and management of
its operations. Sustainment engineering operations have several characteristics that determine the types
of tools needed:

« Operations involve large numbers of equipment and personnel and a variety of technically
complex tasks,

¢ Operations take place in a very dynamic environment, with frequent changes in missions,
resources, and extemal conditions,

» The effective structuring and use of resources (i.e., personnel, equipment, materials, and funds)
is a prime objective, on a par with the timely completion of missions,

» Coordination of activities and resources across uiultiple command levels and with nonmilitary
organizations is crucial.

Current commercial software applications—database management systems, project management
tools, CADD, electronic spreadsheets, wordprocessing, etc.—can assist with specific functions. But
standalone applications generally do not work well with each other and place too much of a burden on
the user to structure the information and manage its flow. USACERL’s TCMS overcomes some of these
problems by linking a set of commercial software packages with the AFCS databases to form a single
menu-driven system that provides basic theater construction planning and management capabilities. As
powerful as those capabilities are, TCMS has serious limitations (user interface, database accessibility,
fragile architecture, CPM-based project management) and does not provide the type of automated support
needed for the next century.

The automated support system that will result from the ITCM effort will be designed to have the
following features:

e Graphical user interface, with extensive use of maps, charts, diagrams, photos, animation, and
3-D rendering

« [Easy database access and manipulafion
« Hypermedia information storage and retrieval

e An online reference library, including the AFCS databases, geographic information, and
technical references

» A host of integrated tools to support mission planning, project design and management, and
resource management :

» Reconfigurabie tool sets that are organizationally integrated but which address operations from
the individual user’s perspective.
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: Some of the developmental capebilities required for the ITCM system can be based on current
software technologies. Others can be added as they mature through the efforts of academic and
commercial rescarchers. These capabilities include:

Computer networking

Distributed object-oriented database management
CADD and three-dimensional walk-through systems
GIS

Multimedia information management

Computer visualization techniques.

The research required to make the ITCM system possibie falls into several broad categories:

The design of a suitable object base to meet the specific needs of the sustainment engineering
mission area

The design of the system's user interface and the investigation of methods for placing
information at the fingertips without overwhelming the user with complexity

The development of n>w project planning and management algorithms that are resource-based,
adaptive, constraint sensitive, and hierarchically consistent

The application of decision support theory, expert system methodologies, and simulation to

‘assist in:

- forming and documenting comprehensive operational plans
- transitioning from long-range planning to crisis action C*
- adapting plans to meet changing conditions

- assessing altematives and risks

- forecasting future requirements

- collecting and analyzing “lessons leamed” data

The exploration of new concepts for managing the time/reality continuum in automated
management systems to permit the comparison of altemative futures and the analysis of
variations between planned and actnal operations.

Through expansion of knowledge in .he areas identified in this report, the ITCM research will
provide the software methods and tools to build the automated support that will be required by the fast
pace of future combat and the demands that the increased tempo will place on the theater infrastructure
that supports the warfighter, ’
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APPENDIX A: Mission Essential Task List

Introduction

Several documents from the U.S. Army Engineer School address the sustainment engineering
mission essential task list (METL), which varies tremendously for each type of deployment. This
appendix contains task lists for conventional warfare during a major regional contingency, for disaster
relief efforts, and for nation assistance.

Major Regional Contingency

During a major regional contingency, the sustainment mission of combat engineers is divided inte
four categories: lines of communication, facilities, area damage control, and production of construction
material. The entire METL for these four categories is outlined below. This list was developed by the
U.S. Amy Enginecer School and was published in their Master Plan for Sustainment Engineering

Equipment (February 1993).

1. Lines of commuynication (1LOC): Responsibilities include the upgrade, maintenance and, when
necessary, construction of LOC supporting the movement of personnel, equipment, and material
over land, air, and water routes.

a. Construct and maintain road nets
(1) Upgrade and maintain existing road nets
(a) Evaluate existing roads
(b) Design road net improvements
(c) Upgrade existing roads
(d) Maintain existing roads
(2) Upgrade or construct new bridges
(a) Evaluate existing bridges
(b) Design bridge reinforcements
(c) Reinforce existing bridges
(d) Design standard fixed bridge replacement
(e) Construct standard fixed bridges
(f) Design nonstandard fixed bridge replacement
(g) Construct nonstandard fixed bridge
(h) Design bridge protective devices
(i) Construct bridge protective devices
(3) Construct new roads
(a) Conduct preliminary reconnaissance
(b) Conduct detailed survey and soils study
(c) Design new road
(d) Construct T/O road
(¢) Surface the road as required
b. Upgrade, maintain, and construct airbases, airfiekis, and heliports
(1) Develop requirements for airbases, airfields, and heliports
(2) Runways, taxiways, and aprons
(a) Extend or construct
(b) Stabilize surface
(c) Install expedient surface
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(3) Airport and heliport facilities

(4) Airbese support facilities

()

Chemical, biological, and radiological decontamination structures

Construct and maintain Over-The-Shore support facilities (part of logistics over the shore)
Upgrade, maintain, and construct ports
(1) Harbor structures

(a)

©)
@
(e)

Channel improvements: Includes harbor bottom surveys, clearance of

Breakwaters, jetties, and headwalls
Navigation aids
Floating and underwater protective structures

(2) Shore structures

(®
®)
©
@
©
®
®)
@)

Port operations facilities

Bulk cargo handling facilities
Container handling facilities
Fuel storage and distribution
Ship refueling and resupply
Defensive structures

Electric power

Transportation marshalling arcas

(3) Underwater structures

Upgrade, maintain, and construct crosscountry pipelines including aboveground, under-
ground, and underwater pipelines.

(1) System (storage and distribution) design

(2) Pipeline construction

(3) Pump station construction




2.

P

(4) Tank farm construction

(5) Protective structure construction
(6) Fire fighting systems installation
(7) Communication system installation
Upgrade and maintain inland waterways
(1) Bottom surveys

(2) Clearance of underwater obstacles
(3) Dredging

(4) Locks and dams

Assist in camouflage, concealment, and deception operations regarding LOC facilities.
Maintain railroads

(1) Track ballast

(2) Track ties

(3) Rail sections

(4) Rail bridges

Ficilities: Responsibilities include the upgrade, maintenance, and, when necessary,
construction of facilities supporting the sustainment of personnel and equipment. Included are
the locating and development of water sources and the provisioning of electric power beyond
that from tactical generators.

a
b.

Acquire, siminister, and dispose of real estate
Upgrade, maintain, install electric power
(1) Provide power when not available
(2) Augment existing commercial power
(3) Repair, maintain, and operate fixed facility
Upgrade, maintain, construct supply facilities
(1) Covered storage
(2) Dry storage
() Cold storage
(2) Open storage
(a) Class Il packaged products
(®) Class V
(c) All other classes
(3) Material handling/cargo transfer
(a) Break-bulk
(b) Trailer transfer
(4) Bulk petroleum storage and distribution
(a) System design
(b) Construction of storage tanks
(c) Construction of pumping facilities
" (d) Construction of connecting pipes
(¢) Construction of protective structures and fire fighting systems
Upgrade, maintain, construct maintenance facilities
(1) Covered structures
(a) Climate controlled
(b) Repair parts storage
(c) All others
(2) Hardstand facilities
Upgrade, maintain, construct medical facilities
(1) Hospital core (surgical, lab, etc.)
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(2) Patient wards
(3) Electrical system
(4) Potable water system
(5) Waste disposal systems
(a) Sanitary water
(b) Nonmedical solid waste
(c) Medical waste
Upgrade, maintain, construct billeting facilities
(1) U.S. forces
(a) Security fencing
(b) Antivehicular obstacles
() Guard towers
(d) Protective structures
(2) Prisoner of war
(a) Security fencing
(b) Antivehicular obstacles
(c) Guard towers
(d) Protective structures
(3) Displaced persons
(a) Security fencing
(b) Antivehicular obstacies
(c) Guard towers
(d) Protective structures
Upgrade, maintain, construct militarily significant facilities
(1) C fxcilities
(2) Communication centers/nodes
(3) Air defense positions
Assist in camoufiage, concealment, and deception operations regarding facilities
Assist in providing field services
(1) Surface water location and source development
(2) Subsurface water location and well drilling
(3) Laundry and bath facilities
(4) Ice production and storage
(5) Mortuary and temporary intemment
(6) Establish and operate sanitary landfills
(7) Snow removal
(8) Decontamination sites

3. Arcadamage control: Responsibilities include the control and relief of both direct and indirect
effects from natural and manmade disasters including war-related damage. Control includes
those proactive measures taken to minimize damage. Relief includes emergency restoration
of minimal services and operating capabilities.

cangp

Structure reinforcement

Route opening and clearance

Structure opening and clearance

Casualty extraction and personnel rescue, especially from structures
Firefighting

(1) Structures

(2) Aress (petroleum and munitions storage, forests, etc.)

(3) Aircraft and vehicles
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Asphait -

a
b
c
d. Lumber
e
f. Salvaged construction materials from existing, damaged, and destroyed

Disaster Relief Mission Task List

FM 5-114, Engineer Operations Short of War, presents lists of the most likely tasks for military
engineer units under a variety of disasters (flood, earthquake, tomado or hurricane, voicano, tidal wave,
snowstorm, and forest fire){pp 3-10-12). While FM 5-114 presents a list for each disaster type, all tasks
are included in the following geneinl list:

Assist in evacuating threatened areas

Assess damage to roads, bridges, structure, utilities

Support search-and-rescue operations with personnel and equipment
Open roadways for emergency and medical traffic

Conduct topographic surveys for the extent of damage

Overprint maps to depict damage, key facilities, and relief activity locations
Construct temporary bridges

Provide emergency power

. Clear debris

10. Demolish unsafe structures

11. Restore critical facilities, services, and utilities

12. Provide power to critical facilities

13. Provide expedient repair of critical distribution systems

14. Construct base camps

15. Transport critical supplies

16. Fight fires.

CRNOAU BN

Nation Assistance Mission Task List

According to FM 5-114, nation assistance includes “all cooperative actions taken by the U.S.
government and governments of other nations to promote intemal development and the growth of
institutions within those nations.” (p 2-1) Exercise deployments and civic action projects are two nation
assistance activities in which engincer troops are actually involved with planning and executing
construction projects. Tasks associated with these activities are quite varied but generally fall into the
following list:

1. Construct roads and bridges
2. Control damage from natural or man-made disasters
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3. Produce construction materials (i.c., crushed rock, lumber, asphait, and concrete)
4. Locate potable water sources

5. Construct and upgrade airficlds

6. Drill wells

7. Provide diving teams for all types of operations

8. Design and manage construction of pipelines

9. Operate and maintain power plants

10. Manage forestry operations

11. Develop, rehabilitate, and maintain port facilities

12. Train host nation personnel in construction, operation, and maintenance of utilitics
13. Train host nation personnel in firefighting

14. Provide topographic engineering support.




APPENDIX B: Sample 412th ENCOM Project Summary

The 412th ENCOM serves as an extension of the SOUTHCOM engineer staff and has participated
in a number of country deployment teams working throughout Central and South America in nation
assistance activities. A major part of the engineer effort involves conducting site inspections and preparing
estimates for engineering projects. An example of an engineer estimate for one such project is cited below
(quoted from “Reserve Engineer Command: Helping Latin America,” by MAJ Robert Bottin and MAJ
Jimmy Fowler, Engineer, November 1992, pp 5-10).

The sample report is thorough in specifying what must be done and why. As a narrative description,
the report is well organized and comprehensive in providing project details. The sequential text
presentation of this plan, however, necessarily mixes information about project goals, environment,
equipment and materials, work breakdown, and operational procedures so that a complete reading of the
report is required to gather all the information about any particular aspect of the project. The topics
discussed in each section of the report are listed below in the right-hand column. This demonstrates how
difficult it is to know and keep track of all of the information pertinent to any one aspect of the project.
Important information about each topic is sprinkied throughout more than five pages of text. This
information will tend to be lost or overlooked during the life of the project. In addition, the text of the
report cannot supply the vast quantity of information that can be supplied by maps, photos, diagrams, and
charts. A hypermedia approach to organizing and storing the information overcomes many limitations of
the narrative approach and helps to express the information in a way that facilitates automating portions
of the planning process.

Cano Blanco Road (Costa Rica)
Project Summary Topics within each section

1. Project Statement

a. Location. The project, which includes the improvement and Map data

construction of a road between Maryland and Parismina, is located in | Equipment transportation
the Limon Province. Equipment could be shipped via sea transport | Planning assumptions

to the Port of Limon. The equipment would then be hauled or Planning factors
conveyed along Highway 32 to Siquirres. At Siquirres, the convoy | Scheduling factors
would take a gravel road to the site. This road is capable of
supporting the maximum loads presented by the equipment. It
should be noted that Del Monte has a large banana plantation located
near the project, and uses the same route for large tractor-trailer units
loaded with bananas.
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b. Scope of Work

(1) The gravel road from Siquirres to Maryland has been
improved to the point that it can support relatively large loads
(approximately 84,000 pounds). The road has a wearing surface and
is approximately 16 feet wide and capable of passing two large
trucks. The road from Maryland to Cano Blanco is basically 7
kilometers (km) long and has a base 12 feet wide with no wearing
surface. It is impossible to maintain. The project in this area
requires adding a wearing surface and widening the road tc 16 feet.
The construction of 5 km of road from Cano Blanco to Parismina
will entail clearing and constructing the roadway. This part of the
project will need filter fabric placed prior to fill material.

(2) The road is important to the country because it opens a
route to the Atluntic Ocean. According to Mr. Jose Chacundo,
Assistant Director of the Ministry of Public Works and
Transportation, construction of the n.«d would:

(a) Facilitate the construction of a small port on the Rio
Parismina. This would provide a much closer and cost
effective route for the shipment of agricultural products.

(b) Provide access to families living in the region. During
the site visit, it was noted that many families live in the area,
especially along the Rio Parismina. Mr. Chacundo stated that
these people have to rely on horses and canoes for
transportaticn.

(c) Open access to the town of Parismina. The town of
Parismina is a tourist community, catering to tarpon and snook
fishermen. The only access to the two is water taxi or small
airplane.

(3) Mr. Ch~cundo stated that this road project is the number
one priority for n.' country. It was determined that the local citizens
desperately want this project. Several local residents met with the
country team, expressed their desire for the project, and stayed with
the team during the site investigation. The local people provided
canoes, horses, and a power boat to visit the site.

¢. Background. The project supports the ambassador’s goal of
strengthening people-to-people relations by providing economic
devclopment and modemization. The strategic objective of
democratization and economic modemization would be supported,
and the country would be favorably disposed to U.S. interests. These
projects are supported by the local people and will modemize the
infrastructure in the region as well as promote economic
development.
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2. Terrain and Weather
a. Site Characteristics

(1) Geotechnical. The area soils generally consist of clayey
silts to sandy silts. The top 6 to 8 inches have a high organic _
content. It was noted during the investigation that, during the wet
season, the top organic layer gets extremely muddy, making
transportation very difficult. The soil approximately 8 inches below
the surface is usually not permeated by the moisture and is capable
of supporting light loads. Mr. Chacundo stated that in the dry season
this silt dries out and will support extremely large loads.

(2) Topographical. The project is located on the coastal plain.
Only minor variations in elevation are evident. The project will cross
one manmade canal.

b. Weather

(1) Temperature Variations. The Caribbean region of Costa
Rica is characterized by moderately high temperatures that vary only
slightly throughout the year. Daytime temperatures range from 81 to
88 degrees Fahrenheit.

(2) Expected Rainfall. The mountain ranges that bisect the
country block the rain-bearing northeast trade winds, causing heavy
and continual rainfall in the Caribbean coastal area during the rainy
season. Annual precipitation ranges from 35 to 60 inches. The wet
season occurs from May through October and the dry season from

January through April.
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3. Execution

The project should be constructed in at least two phases. The
first phase will be the improvement of 7 km of road between
Maryland and Cano Blanco. The only borrow pit for this project is a
river site located approximately 15 km from the beginning of the
project. The first phase should be completed before the second phase
is started because the road probably would not support the continual
hauling of fill material and aggregate and would not allow the
passage of two dump trucks (the road is approximately 12 feet wide).
To adequately improve the roadway in phase one, 12 inches of loose
aggregate (9 inches compacted) should be applied, and the roadway
increased to 16 feet in width. When the roadway is expanded, the
new base should be compacted with a pneumatic tire roller to 95
percent standard proctor. The aggregate for the wearing surface
should be applied in 6-inch lifts and compacted with four passes of a
vibratory roller. Once the aggregate surfacing is completed, the
roadway should be final graded, and compacted with four passes of
the pneumatic tire roller. The borrow area material is large river-run
rock and will need to be crushed. The rock-crusher should probably
be onsite at least one month prior to the heavy equipment.

The second phase of the project will involve the construction of
a road between Cano Blanco and Parismina. The project will require
the clearing of small vegetation (vines and grass) and large trees.
The roadway will be constructed over several swampy areas ranging
in size from 50 to 200 meters (m). Filter fabric should be used in
these areas. A borrow pit about § km from Maryland will produce
sand fill needed to construct the base. Approximately 24 inches of
this fill will be required to raise the road above the natural ground.
The sand fill should also be placed in 6-inch lifts and compacted
with four passes of the vibratory rofler. After four lifts have been
placed, aggregate surfacing can commence. A crushed stone wearing
surface of 15 inches loose (12 inches compacted) should be applied,
as describe above.
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4. Materials
a. General Bill of Materials

(1) First Phase. 13,000 cubic yards (cy) of aggregate will be
needed to complete this phase. It is assumed that an additional 8000
cy of material will be needed to maintain the haul road, for a total of
21,000 cy. The aggregate should have a gradation of:

Total Percent by Weight, Passing Sieves

No. 4
35.95%

No. 16
35-55%

No. 100
4-15%

2- l.ln' 3“-
100% 95-100% 65-95%

A 10-foot section of 60-inch corrugated metal culvert is also
needed to extend one culvert.

(2) Second Phase: 18,500 cy of fill material will be needed to
construct the road base, and a total of 11,500 cy will be needed for
the wearing surface. Approximately 11,500 cy of aggregate will also
be needed to maintain the haul road, since hauling will be over the
road constructed on the new base and some settling is anticipated.
Total aggregate required is 23,000 cy, with the same gradation as in
the first phase. A 40-meter bridge designed and acquired by the
Costa Rican Govemment should be onsite. Approximately 1500 m
of filter fabric, 24 feet wide, wﬂlbemededforconsuucuonmmugh

the swamps.

b. Source. All aggregate will come from a river borrow pit
approximately 15 km from the start of the project. A small sand hill
approximately 5 km from Maryland will provide all earth fill for the
project. The culvert, bridge, and filter fabric will be provided by the
Costa Rican govemment.
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S. Equipment

a. Military Invensory
(1) First Phase

Type

Rock crusher
Front-end loader (5 cy)
D7E dozer

Motor grader

Tractor trailer

5-ton wrecker

Contact truck
Pneumatic tire roller
Vibratory roller

5-ton dump trucks

(2) Second Phase
Iype

Rock-crusher

5-ton dump truck
Front-end loader (5 cy)
D7E dozer

Motor graders

RTO crane (20-ton)
Tractor trailers

5-ton wrecker

Contact truck

Concrete mixer

Pneumatic trailer and tools

Vibratory roller
Pneumatic tire roller

Amoynt Time Estimate
(Days)

1 90

3 60

2 75

3 75

4 90

1 90

1 90

1 75

1 60
20 60

Amount Time Estimate
(Days)

1 145
20 120
3 120
4 145
4 145
1 30
5 160
1 145
1 145
1 30

1 30

1 145
1

145

(Note: Twenty dump trucks are projected and it is anticipated that at least 15 will be
operational at all times. The time estimate is based on using 15 trucks.)

b. Nonmilitary Inventory. None.

c. Fuel and Repair Parts. Fuel can be obtained in Siquirres. Repair
parts can be air delivered to San Jose and then delivered via truck to

the project site.
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6. Manpower.

a. Detailed Site Exploration/Project Design. No further site
exploration is needed. The project design detailed in this report is
sufficient to construct the project.

b. Type of Construction Skills. The project can be constructed by
either a combat construction or combat construction heavy unit. The
construction unit should be company size, augmented with additional
heavy equipment operators from the battalion. The construction can
be performed by Active, Guard, or Reserve units on 2- or 3-week
rotations (preferably 3 week). Total time required from deployment
through redeployment is 90 days for phase 1, and 145 days for phase
2. Key officers and noncommissioned officers should overiap
rotations by at least 3 days for continuity of operations.

c. Types of Support Skills. The construction troops should be
augmented by organic maintenance and mess personnel. The
company should have personnel with local purchase order authority,
and the battalion’s maintenance section should be added. A Costa
Rican security force should be assigned for base security operations.
A water purification team with a reverse osmosis water purification
unit must be onsite to provide potable water.

7. Time.

a. Project Design. No further project design is required for the first
phase. The second phase will require that the Costa Rican
government design a bridge to span the manmade canal.

b. Material Acquisition. The rock crusher should operate from
December through April so that adequate supplies of rock are
available. The rock crusher should be onsite approximately 1 month
prior to the arrival of construction troops in order to have a stockpile
of aggregate at the start of construction. The crusher should operate
continually through construction so that a stockpile of material can be
left for the local maintenance crews. The Costa Rican govemment
will need sufficient time to design and procure a bridge.

c. Equipment Acquisition. Equipment can be shipped via sea to the
Port of Limon and then transported overland to the project site.

d. Support Facilities Construction. A basecamp should be

constructed by the battalion’s vertical section, with construction
taking approximately 7 days.
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8. Summary/conclusions.

a. The first phase of the project lends itself to troop construction. Planning assumption
Equipment can be easily transported to the project. The project is Equipment transportation
not complicated and could be constructed by almost any engineer
unit.

b. The second phase of the project lends itself to troop construction; | Scheduling factors
however, this phase of the project should be ended at the man-made | Planning assumptions
canal. As stated in the time estimate, this entire phase should take
approximately 145 days to complete. By stopping the phase at the
canal, the time estimate is decreased to approximately 80 days.
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APPENDIX C: AWMMM&WH-
Francois Grobler, Carol Subick’

Abstract

The process of developing a construction plan is complex, taking many considérations and
constraints into account. In contrast, the CPM paradigm of planning allows only the results of the
planning process to be recorded from an activity-duration point of view. Any

resource-task orientation, and aimed at multiproject, multilevel management.

Introduction

The proposition that the use of formal planning techniques in construction produces numerous
advantages is almost universally accepted. How the planning should be performed, and what planing tools
to use, are questions with a variety of answers, depending on who is asked. While CPM has been
recognized as the dominant planning tool, its limitations have been all too obvious. We believe that a
quantum leap can be made in planning and control capability with adaptive, multiresolution modeling of
construction plans.

Limitations of the CPM Planning Approach

In the dynamics of real-world construction, even the best laid plans change continually during the
course of a project. Construction managers may be faced with choosing from alternative courses of action
at any point in time. The choices to be made depend on a large number of factors including not only
those that affect the day-to-day schedule of activities of the original plan (weather, material availability,
interference with other crews, temporary labor or equipment shortages, etc.) but also those that arise from
evolutionary shifts in the goals and priorities of the project itself and of the organization responsible for
its completion. The ability to assess and manage these altemnatives and to incorporate them into an
ongoing planning and control process plays an essential role in accomplishing the multiple objectives of
the construction manager, especially in optimizing the use of labor and equipment resources, completing
projects on time, controlling costs, and assuring quality.

Network-based tools using CPM/PERT methodologies have been the traditional starting point for
computerized systems designed to support the construction management process. Such systems focus
primarily on the sequencing and duration of the subtasks of a project with the goal of scheduling resources
and controlling costs to meet a certain completion date. The limitations of CPM/PERT as a planning
tool—indeed, even its suitability as a model of the construction process—have long been realized and
widely discussed in the literature (Arditi 1983), (Birrell 1980), (Davis 1974), (Levitt, et al., 1988).

*Principal Investigators, Pacility Management Division, U.S. Army Construction Engineering Research Laborstosies, P.O. Box
9005, Champaign, IL 61826-9005, telephone no. (217)373-6723.
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From its carliest uses in a manual form, CPM has been criticized for being too rigid in its
requirements to identify a single breakdown of tasks for a project and to determine their logical
sequencing and duration times. The CPM model is not robust enough to handle multipie altematives in
the task breakdown and sequencing or to adequately account for variations in task duration that result from
unpredictable extemal factors. And even though the CPM network provides a simpler approach to
representing the project structure than one that would take these uncertainties into account, the benefits
of modifying a CPM network to adapt to changing conditions tend to be outweighed by the level of time,
effort, and expert knowledge required. As a result, CPM tools do not move naturally into the control

phase of a project and are frequently abandoned after initial planning.

Computerized CPM-based management tools have eased some of the mechanics of preparation and
update, but limitations still abound and expectations have increased. As a single project planning tool,
the CPM framework fails to capture the knowledge used to build the initial network or to adjust it as
conditions change. This is a fundamental flaw if the computer-based tools are to meet the construction
industry’s expectations that they will ultimately be able to support the generation of project plans, to move
seamlessly from planning to control, and to reuse past knowledge and experience to improve present
operations.

Perhaps a more fundamental question, however, is whether the CPM network analysis methodology
provides a suitable framework upon which to build an automated model of the construction management
process. First, CPM focuses on a single project and does not readily scale up to handle multiple projects
in a single framework. Second, CPM’s goal of meeting a project completion deadline takes precedence
over the construction management goals of using resources efficiently and controlling costs. Third, CPM
network sequencing, being task related rather than resource related, is extremely limited in the dependency
relationships that can be represented and manipulated in an automated fashion.

Adaptive, Multi-Resolution Model

A new conceptual approach was developed to fit the real-world construction model better. The main
features of the model are introduced here, and further discussed in the following sections. We propc - that
projects are decomposed in successive hierarchies of tasks and attached abstract resources, with the
tracking of performance metrics and constraints between levels, and between tasks in one level—thus
providing consistent methods to aggregate control data at different levels of resolution. At the leaf level
of the breakdown structure, dynamic task sequencing is performed from an individual resource perspective,
based on a survey of the existing environment, and active constraints, in an inherently adaptive system.
The constraints may inciude temporal, spatial, and resource constraints, and preferences, priorities, etc.
Step-wise simulation can be performed directly on the project model to analyze the effects of actual, or
anticipated conditions, or altemative actions. This approach is made possible by a unified model
underlying the views of the project available to the manager, and others.

The fundamental differences between this approach and existing ones, is that it not only records
activity logic, but also other important considerations, and constraints, in a hierarchical fashion, and that
task sequencing is performed at the resource level, from a resource perspective in compliance with the
relevant current constraints rather than from an activity logic basis only. It also handles multipie projects
elegantly, since the list of tasks to be sequenced for each resource may include tasks from multiple

projects.

Whereas the approach will use elements of knowledge-based system support, our philosophy is to
let the computer “remember,” and track, rather than attempt to supplant the human user in the more
creative aspects of planning. Our approach will aid the user in planning, by recording and retrieving
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relevant information during the planning process, and lighten the burden of adapting plans as the project
unfolds—even propose regenerated schedules, based on the previously recorded planning considerations.

The concepts of the model are now addressed under the headings of: elememts of plans,
decomposition of goals; multi-level plans; task sequencing; plan adaptation.

Elements of Plans

For the purposes of this discussion, plans are represented by sets of tasks (the completion of which
will produce effects which in tum will realize a goal) that are mapped to sets of resources (sourced from
an appropriate resource pool, organizational structure, etc.). The mappings imply a specific method, or
technique, which in turn results in a specific duration, cost, quality, and safety of the effort. The mappings
further take place within a specific environment. These concepts are depicted in Figure C1.

Environment:

Constraints
Assumptions

Physical
= =
Product
#” Duration < e

Resource Resource Cost
Pool crew, eqpt Quality
Safety

Figure C1. Elements of Plans.

Decomposition of Goals

In planning in general, a decomposition of the original goal takes place to create a hierarchy of
subgoals. The decomposition continues to a level where the leaf subgoals can be mapped to a resource,
as described above. It should be noted that the “leaf level” is arbitrary, and dictated by custom and
preference. In construction practical considerations determine that the leaf level is at the crew level. A
consequence of considering the crew level is that the duration of a union of task and resource can be
predicted if a reliabie productivity rate is available. Since the single resource performs the tasks assigned
to it sequentially, these durations can be simply summed. To determine duration of subgoals at higher
levels in the hierarchy, such simple summations cannot be performed because of concurrency in the
execution of tasks.

The question of evaluation of subgoals in terms of criteria for performance set for the goal can not
be fully dealt with in the scope of this paper. It will form the topic of a future paper. But it can be
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briefly stated that we propose in the process of decomposition to explicitly record the metrics to evaluate
subgoals in terms of the performance criteria for the goal.

The process of decomposition is currently practiced in construction in the creation of a work
breakdown structure (WBS). We consider it a very important process, where many of the key construction
decisions are made. Unfortunately, the considerations that caused a particular WBS to be adopted, as well
as the constraints and assumptions that led to it, are not recorded.

These considerations, constraints, and assumptions exist in each level of decomposition, as well as
between peer subgoals within a level. The logic constraints of traditional CPM models are of the latter
nature. Indeed, if no other constraints are recorded, our model has the appearance of a CPM network, at
a given level in the hierarchy.

The process of decomposition is depicted in Figure C2.

‘ Task level
Ezaitionnl

level of
Sub goals LA~

Relationships
constraints

Multi-level Plans

Our model envisions a hierarchy of goals and a hierarchy of resources that contain the
considerations, constraints, and assumptions discussed above. In the planning mode, higher level
(conceptual) resources are assigned to subgoals at the appropriate level. Figure C3 shows the multilevel
plan concept, and illustrates the mapping of subgoal 3,1 to the resource 3,3. This is analogous to
assigning all masonry work to a subcontractor. Eventually tasks are to be assigned (mapped) to individual
resources at the leaf level. In Figure C3 tasks at the leaf level, nl and n2, are both mapped to the
resource n3. Performance at the leaf level can be rolled up in a pre-established manmer and evaluated in
terms of the pre-established metrics, thus making possible consistent, multiresolution modeling of the
project.

The multilevel plan exists within a set of project assumptions and constraints, and must conform
to project resource capacities. It is also subject to numerous environmental factors, as shown in Figure
C3. To the degree the influence of these factors is recorded in the other elements of the plan, they can
be taken into account in the dynamic resequencing of tasks. This scheduling process is based on the
Deck-of-Cards (DOC) paradigm, and will be explained further in the next section.
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Figure C3. Multi-level Plan.

This multilevel approach allows for the rather convenient accommodation of multiple projects, where
multiple projects are represented by branches of the hierarchy, while recording the cross-project constraints
in the same manner other constraints are handled. These multiple projects are intended to reside within
a geographic context (being represented in a geographical information system [GIS)) in order to allow for
reasoning about questions such as the effort and time required to move a piece of equipment from one
site to another.

Sequencing of Tasks

The simple but useful DOC paradigm is depicted by Figure C4. All the tasks assigned to an
individual crew must comply with the constraints set by earlier assignments, i.e., in this example the
subcontracted masonry work is now further decomposed into individual tasks by the subcontractor, as
assigned to its individual crews. Figure C4 shows that mason crew C is instantiated for the conceptual
crew n3 in Figure C3, and that crew C has tasks Y1 through Y5 in its “deck of cards.”

In card games, there are rules of how the deck in hand may be ordered. Analogously, the list of
tasks assigned to crew C may be reordered only within the constraints attached to each task. (It was
alluded to earlier that if activity logic constraints are attached to tasks, and none of the other important
constraints, this approach will generate the equivalent of a CPM schedule.) The effect of the DOC
approach is that resources have the autonomy to sequence the tasks from the resource point of view, while
complying with the constraints linking their tasks with other tasks, resources, and other constraints.
Although not shown, resources may have certain constraints attached, too, such as policy considerations
to guide how a resource should sequence its tasks.
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Figure C4. Deck-of-Cards Paradigm.

This approach is fundamentally different from other knowledge-based approaches to scheduling in
that no activity logic network is created. Except for the Ghost system, all other research prototypes reduce
their considerations to a logic network that is then processed by what is often called a CPM-kemel. An
example of such a system is described by Echeverry (1991). :

. Recent developments in personal information management (PIF) software are beginning to provide
the capability to consider a list of “to-do’s” that are linked to other elements of concem. Packrat™ and
ManagePro™ are examples of such systems. Our prototype is planned to function in some ways like a
PIF for each of the members of the construction team, allowing each member (down to the crew level)
to take control of sequencing its own responsibilities, yet to do so in a manner compatible with the
requirements of other members. It is expected that with the value this system will add to the job, each
member will have an incentive to use it productively rather than seeing it as an upward reporting burden.

Project progress and cost control can be significantly enhanced if crew members directly report
progress at the task level, described by Grobler (1988). The crew rhythm problem (Melin 1989) can be
solved easily.

Adaptation of Plans

The environment in which the project is performed, the project itself, and the resources to perform
it are continuously changing. Since these considerations are reflecied, to some extent, in the constraints
attached to the tasks and recorded elsewhere, the system can dynamically resequence the tasks for each
resource when conditions change. If rain prevents a crew from performing a certain task, that task is
simply shoved further back in the deck, and the crew continues with what can be done next, as determined
in compliance with the relevant constraints.
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Conclusion

This paper first reviewed the limitations of CPM as a paradigm for planning and control of rea!
world projects, and then proposed a new approach to overcome these limitations. The main part of the
paper described the concepts of adaptive, multiresolution modeling of construction plans and how such
plans are used in project control. It also briefly described our plans with our prototype system, which is
currently being implemented.
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APPENDIX D: Excerpts From a Study of Factors That Affect Troop Construction Tasks Below
Platoon Level

This appendix contain excerpts from a study performed by CPT Clarence D. Tumer as part of the
requirements for a Master of Science degree in Industrial Engineering at Wichita State University, Wichita,
KS. CPT Tumer has gained considerable experience through his leadership of troop construction all over
the world. Based on personal experience with the perceived shortcomings in the available tools, he chose
to study the effectiveness of current planning techniques as applied below platoon level.

The significance of this study from the perspective of this technical report lies in his conclusions
that even the relatively simple tasks at the leaf level of the goal decomposition trees can benefit from
planning support. Respondents do not always understand how their tasks fit into the “big picture,” and
therefore have difficulty in making appropriate tradeoffs.

Abstract

AN ANALYSIS OF FACTORS THAT AFFECT THE ADAPTATION OF
TROOP CONSTRUCTION TASKS BELOW PLATOON LEVEL

CLARENCE D. TURNER
Department of Industrial Engineering
The Wichita State University, 1993

The purpose of this study was to document the factors that affect the adaptation of Troop
Construction Tasks (TCTs) below platoon level and to determine if the current project management
techniques used by troop construction units are effective below platoon level. A sample of 38 junior
engineer noncommissioned officers from 20 U.S. Army Installations worldwide participated in this study.
A survey response rate of 97.3 percent was achieved.

A 20-item survey instrument indicated that constraints and conditions did affect the adaptation of
troop construction tasks below platoon level. The constraints and conditions that accounted for 50.7
percent of the adaptation of troop construction tasks were: weather, material availability, equipment
availability, and manpower availability, in that order. An analysis of variance did not denote any
significant difference among the 51 and 62 series military occupational specialties evaluations of the 18
variables (factors) derived in this study. A t-test measured differences in group means on the 18 dependent
variables (factors) used in this study for the groups 51 and 62 series military occupational specialties. A
significant difference exists in one variable (material splitting) with a p=0.029.

The study showed that the current project management technique is not effective below platoon level
and a need exists for a project management tool that can plan and control tasks based on the factors
associated with the resource that is responsible for the tasks.

INTRODUCTION

Military troop construction leaders use the critical path method (CPM) paradigm as a planning tool.
This paradigm was developed during the late fifties. This network-based planning tool is used to schedule
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troop construction tasks based primarily on task-dependency. There is a need for a project management
tool that wil! schedule troop construction tasks (TCTs) below platoon level (BPL) based not only on task
dependency but environmental constraints and considerations as well. Additionally, this tool must be able
to reschedule tasks based on the same criteria.

Once tasks are assigned to crews, the order of performing these tasks could be cast as a constraint
satisfaction problem. The environmental factors force the planning and controlling of tasks from a resource
point of view, while acknowledging the constraints, conditions, and priorities which link tasks with other
tasks, resources, constraints, and conditions. The behavioral aspects of these factors in most cases are not
available and must be sought out. This research will focus on developing this infcrmation. Throughout
this research, resources will be classified as: crews or teams, squads, sections, and platoons. For example,
a typical vertical engineering squad consists of carpenters/masons, electricians, plumbers, a five-ton dump
truck, tools, and accessories.

CPM does not provide troop construction leaders below platoon levei solutions on how to plan and
control resources effectively. There is a need for a construction management tool that can plan and track
tasks from a resource point of view. This tool must inherently consider the constraints associated with each
resource.

This research will examine CPM’s applicability for planning and controlling tasks in the real world
troop construction environment BPL. CPM does not allow troop construction managers BPL the latitude
to plan and track. Therefore, it offers little support during the control phase of the project.

The forward and backward pass scheduling of tasks with CPM is useful for a single project, with
unlimited resources, in a controllable environment. Military troop construction leaders are often
responsible for many projects, are faced with limited resources, and have little control over environmental
factors. Therefore, this research will examine why the classical planning technique “CPM” is quickly
abandoned when constraints or conditions such as weather or priority shifts occur during the control phase
of a task. Troop construction managers usually refer to an isolated informal rescheduling of tasks at a
resource level, when such a situation occurs. The rescheduling of a task often stems from a constrained
resource or a change in environmental conditions.

Grobler and Subick (1993) discuss the limitations of CPM planning and proposed an Adaptive,
Multi-Resolution Modeling of Construction Plans, which are addressed under the headings of: elements
of plans; decomposition of goals; multilevel plans; task sequencing; and plan adaptation.

This research will consist of a thorough study of factors that impact the adaptation of troop
construction tasks BPL, designed to complement the ongoing research of Grobler and Subick (1993). The
overall goal of this research is to investigate the effects current constraints and conditions impose on the
adaptation of troop construction tasks BPL.

Literature Review Summary

Military engineering construction during peace and wartime consists of horizontal and vertical
construction of hardened facilities. This study will focus on troop construction scenarios where tasks
mapped to resources at the leaf level (crew or team) are subject to constrained conditions.

Several mathematical techniques have been developed over the years to generate optimal project
schedules where the minimization of the project length is desired (Badiru, 1988; Sisson, 1961; Conway,
et. al., 1967; Muth and Thompson, 1963). These techniques are not practical because of the computational
intractability of generalized formulations. Heuristics are used to handle such complex scheduling problems.
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A heuristic technique must be developed to take us into the new generation of troop construction
sdleduhngthatwillglvepmjectmanagersmetoolstoplantasksfmmamsourcepomofvnewasopposed
to an activity dependency point of view. Therefore, we must use heuristics that are capabie of handling
the diversities found in project scheduling such as constrained resources. This research will focus on the
constraints and considerations this heuristic must adhere to. Additionally, this research will validate that
the current project management technique is not effective below platoon level.

onale jective

It is known that troop construction is confronted with multiple projects, constrained resources, and
several levels of management. This makes it one of the most complex scheduling problems facing
construction managers.

It is also known that the research in this area has centered around the formulation of heuristics
restricted to the case in which each job may be performed in only one predefined way. In general, the
research focused on reducing project duration and not the assignment of resources to tasks.

The scheduling and rescheduling of tasks occurs based on constraints associated with the shared
resource. Troop construction managers need a planning and control tool that can formally schedule and
reschedule tasks based on constraints associated with the resource. First of all, it should be stressed that
in the presence of time and resource restrictions, there seems to be no way of successfully using
conventional scheduling rules (Kurtulus and Davis, 1982; Kurtulus and Narula, 1985; Russell, 1986; Drexl,
1991).

The purpose of this study was to document the factors that affect the adaptation of TCTs below
platoon level and to determine if the current project management techniques used by troop construction
units are effective below platoon level. The study investigated the behavior of constraints and conditions
on real-world TCTs. A survey instrument was developed and the collected data analyzed to determine
the following specific research questions:

1. Identify and validate the factors that affect the adaptation of TCTs below platoon level.
a. H, Determine if there is a significant difference among the factors.
b. H, Determine if there is a significant difference in the factors that affect vertical and

horizontal TCTs.

2. Determine if the current project management technique considered factors associated with the

planning and controlling of tasks BPL.

Assess the attitude of using a computer system designed to plan and control tasks BPL.

Determine if the CPM is effective BPL.

a. Determine if project planning is required BPL.

b. Determine if project leaders BPL consider the factors associated with project planning when
constructing their project networks.

¢. [Identify how tasks are assigned to resources BPL.

d. Determine if the assignment of these tasks are understood by noncommissioned officers
(NCOs) below platoon level.

¢. Identify the level where TCTs are performed in sequential order.

5. Assess the attitude of having a system that will advise junior NCOs on how to perform some
of the more complicated tasks.

> w
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METHODOLOGY

For the purpose of answering the research questions, a survey instrument was designed and
implemented following the design suggested by Wilson and Corlett (1990). The survey instrument elicited
demographic data on each subject, which consisted of six items: rank, MOS, years experience, unit, duty
location, and duty position.

A 5-point Likert scale was used to access the level of agreement or disagreement respondents
expressed to survey questions 14, 6-15, and 17. Survey ques’ *8-20 allowed the respondents
to provide more than one answer. Question 16 was open-endew.

ation and Sample Size

The targeted subjects in this study consisted of at least one representative (crew, team, or squad
leader) from each of the active duty troop construction combat heavy engineering battalions in the U.S.
Amy. Eighty percent of the active duty units were represented in this study. Along with the combat
engineering battalions, two support battalions, one transportation company, and two reserve units that were
not targeted provided valuable feedback to this study.

The subjects were junior NCOs attending their basic professional development course for the 51 and
62 series MOSs. These courses are conducted at the Libby noncommissioned officer academy (NCOA)
at Fort Leonard Wood, Missouri.

Data Collection

' The researcher administered the survey to a class of twenty 51 series students on May 27, 1993 at
the Libby NCOA, Fort Leonard, MO. An additional 18 surveys were administered to the 62 series
students. The 20 surveys administered to the 51 series MOS were useable and 17 of the 18 surveys
administered to the 62 series MOS were useable.

Statistical Treatment and Analysis

The coded data were entered into a text file using WordPerfect and later downloaded into a data
base file using SYSTAT. Responses to the open-ended question were coded by hand and a content
analysis was performed. The demographic data were tabulated and summarized in Table 1.

Limitations of Study
The targeted population for this study (junior NCOs from combat heavy engineering battalions)
limits the ability to generalize to other groups which may share certain characteristics. For example,

senior NCOs, company and field grade officers have traditionally exhibited a more assiduous attitude
toward project management and could well express divergent perceptions from the junior NCOs who

participated in this survey.
RESULTS AND ANALYSIS

Overview

To answer the proposed research questions, it was necessary to collect and analyze information from
junior NCOs throughout the Army. The data was collected in a questionnaire developed by the researcher.

68




The 20-item questionnaire was administered to 38 junior NCOs worldwide. One survey (62 series junior
NCO) was partially completed and could not be used in this study. Only 18 of the 51 series responses
to question 19 were useable and 14 of the 62 series responses to question 19 were useable. Only 18 of
the 51 series responses to question 20 were useable and 9 of the 62 series responses to question 20 were
useable.

The junior NCOs are stationed at 18 active duty installations and two reserve installations, which
included the continental United States, Alaska, Hawaii and Germany. The leadership positions held by
the NCOs included 15 team leaders, 18 squad leaders, 1 platoon sergeant, 1 section leader, 1 repair and
utility sergeant, and 1 instructor. The following results in this study pertain to TCTs below platoon level:

Table 1: Demographics

Level Subjects Average Experience 51 MOS 62 MOS
Team 15 6.1 7 8
Squad 18 6.1 10

Other 4 8.8 3 1

This study tested 18 factors that affected the adaptation of TCTs below platoon level and validated
16 of those. The results of these factors are presented in Table 2. For example, the factor “WEATHER"”
was ranked the number 1 (most often) factor to force the adaptation of construction plans at the troop
construction level. The significance of the results is that they demonstrate the need for a planning tool
that can easily incorporate these factors in the planning process, as well as in the adaptation of plans.

Table 2: Factors Affecting Construction Plans

FACTORS Number n Percent Cum Per
Weather 1 26 16.3 16.3
Material Availability 2 20 12.5 28.8
Manpower Availability 3 18 11.3 40.1
Equipment Availability 4 17 10.6 50.7
Mandatory Training 1 4 8.7 59.4
Time 6 14 8.7 68.1
Cost 7 10 6.2 74.3
Interference With Other Tasks 8 10 6.2 80.5
Goal Change 9 9 5.6 86.1
Manpower Splitting 10 5 31 89.2
Task Splitting 11 4 2.5 91.7
Administration 12 3 1.9 93.6
Other 13 3 1.9 95.5
Preference 14 2 1.3 96.8
Policy 15 2 1.3 98.1
Equipment Splitting 16 2 1.3 99.4
Material Splitting 17 1 0.6 100
Situational 18 0 0 100
Substitution of Resources 19 0 0 100




The results also strongly indicated three additional variables:

1. Lack of Experience
2. Lack of Knowledge

3. Lack of Training

Maddiuonllvaﬂableswenmtinﬂwoﬁginﬂqmﬁom.hnmaddedtoﬂnsmdybuui
on the subjects’ response to the questionnaire. (Please refer to the full text of Tumer’s thesis, where the
effects these variables had on the adaptation of TCTs is fully discussed.)

Conclysions
The following conclusions were drawn from the results of this study:

1. The current project management technique CPM is not effective below piatoon level. This
technique does not consider the factors associated with the planning and controlling of TCTs below
platoon level. There was overwhelming support among respondents in this study for a project management
tool that can plan and control TCTs based on the factors associated with the resource that is responsible
for the tasks.

2. This study derived and validated 18 factors that affected the adaptation of TCTs below platoon
level. The factors that had 50.7 percent of the impact on the adaptation of TCTs were: weather, material
availability, equipment availability, and manpower availability, respectively. The study solicited optional
comments in question nineteen. The three additional factors were write-ins from three of the respondents.
These factors are: experienced personnel, lack of knowledge by planners “at or above piatoon level” about
the factors associated with the planning of TCTs, and lack of training. An independent t-test measured a
significant difference in means for material splitting. An ANOVA tested the effect among the 51 and 62
series MOSS evaluation of the 18 variables. The ANOVA test was not significant.

3. Junior NCOs below piatoon level are concemned about leaders above them, particularly, 2LT and
ILT, not taking into account the factors that affect the adaptation of TCTs at their level.

4. There was strong support among respondents about having a system that will assist them on how
to perform some of the more complicated TCTs.

5. This study showed that 51.4 percent of the tasks are performed in sequential order at the crew
or team level.

6. Project plannirg is required BPL and junior NCOs need to be more involved in this planning.
7. Tasks are assigned to elements BPL by verbal order, operation order, tasking list, and training

schedules. The project planning paradigm discussed in question one above must include the assignment
of tasks to the resource that is responsible for the TCTs.

Based on the results and the conclusions of this study, the following recommendations for future
research are made:

1. Conduct a study on the analysis of the factors that affect the adaptation cf troop construction
plans (1) at platoon level and (2) above platoon level.
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2. Quantify the list of constraints used in this study.

3. An investigation on designing a data base using object oriented programming C++ or expert
systems “knowledge based” that has the ability to use past information to make future decisions.

4. Develop a system that will advise troop construction leaders on how to perform some of the
more complicated TCTs.
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LIST OF ACRONYMS

ADA air defense artillery

AFCS Amy Facilities Component System
ASCE American Society of Civil Engineers
BOM bill of materials

BPL below platoon level

c command and control

CADD computer-aided design and drafting
CBR chemical, biological, and radiological
CENTCOM Central Command

CESP Civil Engincering Support Plan
COMMZ communications zone

CPM critical path method

DBMS database management system

DDE dynamic data exchange

DLL dynamic link library

DOC Deck-of-Cards (paradigm)

DS/DS Desert Shield/Desert Storm

EAC echelons above Corps

ECMP Engineer Construction Manageme:n Plan
ENCOM engineer command

FEMA Federal Emergency Management Agency
GIS geographic information system

GPS Global Positioning System

GUl1 graphical user interface

HHC headquarters and headquarters company
ITCM Integrated Theater Construction Mansgement
LEE labor and equipment estimate

LOC lines of communication

LOTS logistics over the shore

MEAPO Middie East/Africa Projects Office
METL mission essential task list

MOS military occupational specialty




NCO
NCOA
NSN
OLE

PERT

PIF
SOUTHCOM
SUPCOM
TACAPS
TCMS

TOGS
TUSEG
USACE
USACERL

noncommissioned officer
noncommissioned officer academy

national stock number

object linking and embedding
object-oriented programming

Program Evaluation and Review Technique
personal information management

U.S. Southern Command

Support Command

Theater Army Construction Automated Planning System
Theater Construction Management System
troop construction task

table of equipment

theater-oriented guide specification

the U.S. Army Engineer Group

U.S. Amy Corps of Engineers
U.S. Amy Construction Engineering Research Laboratories

work breakdown structure
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